
The Scala Experiment
{

Can We Provide Better Language Support for Component
Systems?

Martin Odersky
EPFL

1

Component software { state of the art

In principle, software should be constructed from re-usable parts
(\components").
In practice, software is still most often written \from scratch", more
like a craft than an industry.
Programming languages share part of the blame.
Most existing languages o�er only limited support for components.
This holds in particular for statically typed languages such as Java and
C#.

2

How to do better?

Hypothesis 1: Languages for components need to be scalable;
the same concepts should describe small as well as large parts.
Hypothesis 2: Scalability can be achieved by unifying and
generalizing functional and object-oriented programming concepts.

3

Why unify FP and OOP?

Both have complementary strengths for composition:
Functional programming: Makes it easy to build interesting things
from simple parts, using
� higher-order functions,
� algebraic types and pattern matching,
� parametric polymorphism.

Object-oriented programming: Makes it easy to adapt and extend
complex systems, using
� subtyping and inheritance,
� dynamic con�gurations,
� classes as partial abstractions.

4

These are nice reasons, but...

In reality, I no longer wanted to sit between two chairs!

5

Scala

Scala is an object-oriented and functional language which is
completely interoperable with Java.
(the .NET version is currently under reconstruction.)
It removes some of the more arcane constructs of these environments
and adds instead:
(1) a uniform object model,
(2) pattern matching and higher-order functions,
(3) novel ways to abstract and compose programs.
An open-source distribution of Scala has been available since Jan 2004.
Currently: � 1000 downloads per month.

6

Unifying FP and OOP

In the following, I present three examples where
. formerly separate concepts in FP and OOP are identi�ed, and
. the fusion leads to something new and interesting.

Scala uni�es
� algebraic data types with class hierarchies,
� functions with objects,
� modules with objects.

7

1st Uni�cation: ADTs are class hierarchies

Many functional languages have algebraic data types and pattern
matching.
) Concise and canonical manipulation of data structures.

Object-oriented programmers object:
� \ADTs are not extensible!"
� \ADTs violate the purity of the OO data model!"
� \Pattern matching breaks encapsulation!"

8

Pattern matching in Scala

. Here's a a set of de�nitions describing binary trees:
abstract Tree[T]case object Empty extends Treecase class Binary(elem : T, left : Tree[T], right : Tree[T]) extends Tree

. And here's an inorder traversal of binary trees:
def inOrder[T](t : Tree[T]): List[T] = t match fcase Empty) List()case Binary(e, l, r)) inOrder(l) ::: List(e) ::: inOrder(r)g

. The case modi�er of a class means you can pattern match on it.

9

Pattern matching in Scala

. Here's a a set of de�nitions describing binary trees:
abstract Tree[T]case object Empty extends Treecase class Binary(elem : T, left : Tree[T], right : Tree[T]) extends Tree

. And here's an inorder traversal of binary trees:
def inOrder[T](t : Tree[T]): List[T] = t match fcase Empty) List()case Binary(e, l, r)) inOrder(l) ::: List(e) ::: inOrder(r)g

. This design keeps:
Purity: All cases are classes or objects.
Extensibility: You can de�ne more cases elsewhere.
Encapsulation: Only constructor parameters of case classes are revealed.

10

2nd Uni�cation: functions are objects

Scala is a functional language, in the sense that every function is a
value.
Functions can be anonymous, curried, nested.
Familiar higher-order functions are implemented as methods of Scala
classes. E.g.:

matrix.exists(row) row.forall(0 ==)))
Here, matrix is assumed to be of type Array[Array[int]], using Scala's
Array class (explained below)

11

If functions are values, and values are objects, it follows that functions
themselves are objects.
In fact, the function type S) T is equivalent to

scala.Function1[S, T]
where Function1 is de�ned as follows in the standard Scala library:

abstract class Function1[�S, +T] f def apply(x : S): T g
(Analogous conventions exist for functions with more than one
argument.)
Hence, functions are interpreted as objects with apply methods. For
example, the anonymous \successor" function x : int) x + 1 is
expanded as follows.

new Function1[int, int] f def apply(x : int): int = x + 1 g

12

Why should I care?

Since) is a class, it can be subclassed.
So one can specialize the concept of a function.
An obvious use is for arrays { mutable functions over integer ranges.

class Array[A](length : int) extends (int) A) fdef length : int = ...def apply(i : int): A = ...def update(i : int, x : A): unit = ...def elements : Iterator[A] = ...def exists(p : A) boolean): boolean = ...g
Another bit of syntactic sugaring lets one write:

a(i) = a(i) � 2 for a.update(i, a.apply(i) � 2)

13

Partial functions

Another useful abstraction are partial functions.
These are functions that are de�ned only in some part of their domain.
What's more, one can inquire with the isDe�nedAt method whether a
partial function is de�ned for a given value.

abstract class PartialFunction[�A, +B] extends (A) B) fdef isDe�nedAt(x : A): Booleang
Scala treats blocks of pattern matching cases as instances of partial
functions.
This lets one express control structures that are not easily expressible
otherwise.

14

Example: Erlang-style actors

Two principal constructs (adopted from Erlang).
actor ! message // asynchronous message send
receive f // message receievecase msgpat1) action1...case msgpatn) actionng

Send is asynchronous; messages are bu�ered in an actor's mailbox.
receive picks the �rst message in the mailbox which matches any of
the patterns mspati.
If no pattern matches, the actor suspends.

15

Example: orders and cancellations

val orderManager =actor floop freceive fcase Order(sender, item))val o = handleOrder(sender, item); sender ! Ack(o)case Cancel(o : Order))if (o.pending) f cancelOrder(o); sender ! Ack(o) gelse sender ! NoAckcase x)junk += xggg
val customer = actor forderManager ! myOrderordermanager receive f case Ack) ... gg

16

Implementing receive

Using partial functions, it is straightforward to implement receive:
def receive[A](f : PartialFunction[Message, A]): A = fself.mailBox.extractFirst(f.isDe�nedAt) match fcase Some(msg)) f(msg)case None) self.wait(messageSent)gg...g

Here,
self designates the currently executing actor,
mailBox is its queue of pending messages, and
extractFirst extracts �rst queue element matching given predicate.

17

Library or language?

A possible objection to Scala's library-based approach is:
Why de�ne actors in a library when they exist already in
purer, more optimized form in Erlang?

One good reason is that libraries are much easier to extend and adapt
than languages.
For instance, both Erlang and the Scala library attach one thread to
each Actor.
This is a problem for Java, where threads are expensive.
Erlang is much better at handling many threads, but even it can be
overwhelmed by huge numbers of actors.

18

Event-based actors

An alternative are event-based actors.
Normally, this means inversion of control, with a global rewrite of the
program.
But if actors are implemented as a library, it is easy to implement a
variation of receive (call it react) which liberates the running thread
when it blocks for a message.
The only restriction is that react should never return normally:

def react(f : PartialFunction[Message, unit]): Nothing = ...
Client-code is virtually unchanged between the multi-threaded and
event-based versions of the library.

19

Performance: react vs. receive

Number of token passes per second in a ring of processes.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 10 100 1000 10000

N
um

be
r o

f t
ok

en
 p

as
se

s/
s

Number of processes

threads
tba
eba

SALSA 1.0.2

20

3rd Uni�cation: modules are objects

Scala has a clean and powerful type system which enables new ways of
abstracting and composing components.
A component is a program part, to be combined with other parts in
larger applications.
Requirement: Components should be reusable.
To be reusable in new contexts, a component needs interfaces
describing its provided as well as its required services.
Most current components are not very reusable.
Most current languages can specify only provided services, not
required services.

Note: Component 6= API !
21

No statics!

A component should refer to other components not by hard links, but
only through its required interfaces.
Another way of expressing this is:

All references of a component to others should be via its
members or parameters.

In particular, there should be no global static data or methods that are
directly accessed by other components.
This principle is not new.
But it is surprisingly di�cult to achieve, in particular when we extend
it to classes.

22

Functors

One established language abstraction for components are SML
functors.
Here,

Component =̂ Functor or Structure
Interface =̂ Signature
Required Component =̂ Functor Parameter
Composition =̂ Functor Application

Sub-components are identi�ed via sharing constraints.
Shortcomings:
{ No recursive references between components{ No inheritance with overriding{ Structures are not �rst class.

23

Components in Scala

In Scala:
Component =̂ Class
Interface =̂ Abstract Class
Required Component =̂ Abstract Type Member or

Explicit Self-Type
Composition =̂ Modular Mixin Composition

Advantages:
+ Components instantiate to objects, which are �rst-class values.
+ Recursive references between components are supported.
+ Inheritance with overriding is supported.
+ Sub-components are identi�ed by name
) no explicit \wiring" is needed.

24

Component abstraction

There are two principal forms of abstraction in programming
languages:

parameterization (functional)
abstract members (object-oriented)

Scala supports both styles of abstraction for types as well as values.
Both types and values can be parameters, and both can be abstract
members.
(In fact, Scala works with the functional/OO duality in that
parameterization can be expressed by abstract members).

25

Abstract types

Here is a type of \cells" using object-oriented abstraction.
abstract class AbsCell ftype Tval init : Tprivate var value : T = initdef get : T = valuedef set(x : T) f value = x gg

The AbsCell class has an abstract type member T and an abstract
value member init. Instances of that class can be created by
implementing these abstract members with concrete de�nitions.

val cell = new AbsCell f type T = int; val init = 1 gcell.set(cell.get � 2)
The type of cell is AbsCell f type T = int g.

26

Path-dependent types

� It is also possible to access AbsCell without knowing the binding
of its type member.

� For instance: def reset(c : AbsCell): unit = c.set(c.init);
� Why does this work?

. c.init has type c.T. The method c.set has type c.T) unit.. So the formal parameter type and the argument type
coincide.

c.T is an instance of a path-dependent type.2
6664

In general, such a type has the form x0: : : : :xn:t, where
� x0 is an immutable value
� x1; : : : ; xn are immutable �elds, and
� t is a type member of xn.

3
7775

27

Safety requirement

Path-dependent types rely on the immutability of the pre�x path.
Here is an example where immutability is violated.

var
ip = falsedef f(): AbsCell = f
ip = !
ipif (
ip) new AbsCell f type T = int; val init = 1 gelse new AbsCell f type T = String; val init = "" ggf().set(f().get) // illegal!
Scala's type system does not admit the last statement, because the
computed type of f().get would be f().T.
This type is not well-formed, since the method call f() is not a path.

28

Example: symbol tables

Here's an example which re
ects a learning curve I had when writing
extensible compiler components.
� Compilers need to model symbols and types.
� Each aspect depends on the other.
� Both aspects require substantial pieces of code.

The �rst attempt of writing a Scala compiler in Scala de�ned two
global objects, one for each aspect:

29

First attempt: global data
object Symbols f object Types fclass Symbol f class Type fdef tpe : Types.Type; def sym : Symbols.Symbol... ...g g// static data for symbols // static data for typesg g

Problems:
� Symbols and Types contain hard references to each other.
Hence, impossible to adapt one while keeping the other.

� Symbols and Types contain static data.
Hence the compiler is not reentrant, multiple copies of it cannot
run in the same OS process.
(This is a problem for the Scala Eclipse plug-in, for instance).

30

Second attempt: nesting

Static data can be avoided by nesting the Symbols and Types objects
in a common enclosing class:

class SymbolTable fobject Symbols fclass Symbol f def tpe : Types.Type; ... ggobject Types fclass Type fdef sym : Symbols.Symbol; ... ggg
This solves the re-entrancy problem. But it does not solve the
component reuse problem.
. Symbols and Types still contain hard references to each other.
. Worse, they can no longer be written and compiled separately.

31

Third attempt: a component-based solution

Question: How can one express the required services of a
component?
Answer: By abstracting over them!
Two forms of abstraction: parameterization and abstract members.
Only abstract members can express recursive dependencies, so we will
use them.

abstract class Symbols f abstract class Types ftype Type type Symbolclass Symbol f def tpe : Type g class Type f def sym : Symbol gg g
Symbols and Types are now classes that each abstract over the
identity of the \other type". How can they be combined?

32

Modular mixin composition

Here's how:
class SymbolTable extends Symbols with Types

Instances of the SymbolTable class contain all members of Symbols as
well as all members of Types.
Concrete de�nitions in either base class override abstract de�nitions in
the other.
2
664

Modular mixin composition generalizes the single inheritance + interfacesconcept of Java and C#.It is similar to traits [Schaerli et al, ECOOP 2003], but is more
exiblesince base classes may contain state.

3
775

33

Fourth attempt: mixins + self-types

The last solution modeled required types by abstract types.
In practice this can become cumbersume, because we have to supply
(possibly large) interfaces for the required operations on these types.
A more concise approach makes use of self-types:

class Symbols requires Symbols with Types fclass Symbol f def tpe : Type ggclass Types requires Types with Symbols fclass Type f def sym : Symbol ggclass SymbolTable extends Symbols with Types
Here, every component has a self-type that contains all required
components.

34

Self-types

� In a class declarationclass C requires T f ... g
T is called a self-type of class C.

� If a self-type is given, it is taken as the type of this inside the
class.

� Without an explicit type annotation, the self-type is taken to be
the type of the class itself.

Safety Requirement
� The self-type of a class must be a subtype of the self-types of all
its base classes.

� When instantiating a class in a new expression, it is checked that
the self-type of the class is a supertype of the type of the object
being created.

35

Symbol table schema

Here's a schematic drawing of scalac's symbol table:
Types

Type

Name

Symbol

definitions

Symbols

Symbol

Name

Type

Definitions

Name

Symbol

definitions

Names

Name

SymbolTable

Type

Symbol

definitions

Name

Inheritance
Mixin composition

Class

Required

Provided

Selftype annotation Nested class

We see that besides Symbols and Types there are several other classes
that also depend recursively on each other.

36

Bene�ts

� The presented scheme is very general { any combination of static
modules can be lifted to a assembly of components.

� Components have documented interfaces for required as well as
provided services.

� Components can be multiply instantiated
) Re-entrancy is no problem.

� Components can be
exibly extended and adapted.

37

Example: logging

As an example of component adaptation, consider adding some
logging facility to the compiler.
Say, we want a log of every symbol and type creation, written to
standard output.
The problem is how insert calls to the methods for logging into an
existing compiler
� without changing source code,
� with clean separation of concerns,
� without using AOP.

38

Logging classes

The idea is that the tester of the compiler would create subclasses of
components which contain the logging code. E.g.

abstract class LogSymbols extends Symbols foverride def newTermSymbol(name : Name): TermSymbol = fval x = super.newTermSymbol(name)System.out.println("creating term symbol " + name)xg...g
... and similarly for LogTypes.
How can these classes be integrated in the compiler?

39

Inserting behavior by mixin composition

Here's an outline of the Scala compiler root class:
class ScalaCompiler extends SymbolTable with ... f ... g

To create a logging compiler, we extend this class as follows:
class TestCompiler extends ScalaCompiler with LogSymbols with LogTypes

Now, every call to a factory method like newTermSymbol is
re-interpreted as a call to the corresponding method in LogSymbols.
Note that the mixin-override is non-local { methods are overridden
even if they are de�ned by indirectly inherited classes.

40

Mixins + self-types vs. AOP

Similar strategies work for many adaptations for which aspect-oriented
programming is usually proposed. E.g.
� security checks
� synchronization
� choices of data representation (e.g. sparse vs dense arrays)

Generally, one can handle all before/after advice on method join-points
in this way.
However, there's no quanti�cation over join points as in AOP.

41

Summing up

Here are counts of non-comment lines of three compilers I was
involved with:

old scalac1 48,484 loc
new scalac2 22,823 loc
javac3 28,173 loc

Notes:
1 Written in Pizza (30824 loc) and Scala (17660 loc),Scala code was literally translated from Pizza.2 Written in Scala.3 Pre-wildcards version of javac 1.5, written in Java.

This indicates that Scala achieves a compression in source code size of
more than 2 relative to Java.

42

Things that worked out well:
� Combination of FP and OOP was much richer than anticipated:

. GADTs,. type classes, concepts,. Scala compiler was a fertile testing ground for new design
patterns.

� Scala lets one write pleasingly concise and expressive code.
� It shows great promise as a host language for DSL's.
� New discoveries on the OOP side:

. modular mixin composition,

. selftypes,

. type abstraction and re�nement.

43

Immersion in the Java/.NET world was a double-edged
sword:
+ It helped adoption of the language.
+ It saved us the e�ort of writing a huge number of libraries.
+ We could ride the curve in performance improvements of the VM

implementations (quite good for 1.5 JVM's by IBM and Sun).
{ It restricted the design space of the language:

� No true virtual classes.� Had to adopt overloading, null-references as is.� Limits on tail recursion.
{ It made the language design more complex.
{ It prevented some bitsy optimizations.

It would be interesting to see another uni�cation of FP and OOP that
is less determined by existing technology.

44

Conclusion

� Scala blends functional and object-oriented programming.
� This has worked well in the past: for instance in Smalltalk,
Python, or Ruby.

� However, Scala is the �rst to unify FP and OOP in a statically
typed language.

� This leads to pleasant and concise programs.
� Programming in Scala has a similar feel as programming in a
modern \scripting language", but without giving up static typing.
Try it out: scala.ep
.ch

Thanks to the (past and present) members of the Scala team:
Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles Dubochet, BurakEmir, Philipp Haller, Sean McDermid, St�ephane Micheloud, NikolayMihaylov, Michel Schinz, Lex Spoon, Erik Stenman, Matthias Zenger.

45

Relationship between Scala and other languages

Main in
uences on the Scala design:
� Java, C# for their syntax, basic types, and class libraries,
� Smalltalk for its uniform object model,
� Beta for systematic nesting,
� ML, Haskell for many of the functional aspects.
� OCaml, OHaskell, PLT-Scheme, as other combinations of FP and
OOP.

� Pizza, Multi-Java, Nice as other extensions of Java with functional
ideas.

(Too many in
uences in details to list them all)
Scala also seems to in
uence other new language designs, see for

46

instance the closures and comprehensions in C# 3.0.

47

Related language research

Mixin composition: Bracha (linear), Duggan, Hirschkowitz
(mixin-modules), Schaerli et al. (traits), Flatt et al. (units,
Jiazzi), Zenger (Keris).
Abstract type members: Even more powerful are virtual classes
(Ernst, Ostermann, Cook)
Explicit self-types: Vuillon and R�emy (OCaml)

48

Scala and XML

A rich application �eld for functional/object-oriented languages is
XML input and output.
Reason:
� XML data are trees which need to be accessed \from the outside".

Functional languages are particularly good at this task.
� At the same time, XML data are often processed by systems that
are dynamically composed (e.g. web services).

Object-oriented languages are particularly good at this task.
However, to be useful, a language needs some minimal support for
XML.
Scala provides:

49

� XML literals with holes)
� XML regular expression pattern matching
� However, it does not provide regular expression types.

50

