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Abstract

We present a type system for a language based on F≤, which
allows certain type annotations to be elided in actual pro-
grams. Local type inference determines types by a com-
bination of type propagation and local constraint solving,
rather than by global constraint solving. We refine the pre-
viously existing local type inference system of Pierce and
Turner[PT98] by allowing partial type information to be
propagated. This is expressed by coloring types to indicate
propagation directions. Propagating partial type informa-
tion allows us to omit type annotations for the visitor pat-
tern, the analogue of pattern matching in languages without
sum types.

1 Introduction

Many modern programming languages are based on type
systems which combine a notion of objects and subtyp-
ing with parametric polymorphism [Str91, Mey92, CDG+92,
NC97, OW97, PT98, BOSW98]. A popular basis for such
type systems is F≤, the second-order lambda calculus with
subtyping. While F≤ is an excellent basis for explaining the
abstract type structure of programs, it is less suitable as
a kernel language for concrete source programs, because of
the excessive amount of type information that needs to be
written by the programmer.
Most programmers would agree that some kinds of type an-
notations are useful as a vehicle for program documentation
whereas others are annoying because they only repeat in-
formation that can easily be deduced from the context. For
instance, a type signature for a globally defined function
is generally useful, while an explicit type parameter in a
function application is often annoying, in particular when
the same information can be deduced from the types of the
function’s actual value parameters.
Local type inference [PT98] aims at eliminating the need
for annoying explicit type information. It does this with
two techniques. First, type parameters in a function appli-
cation are inferred from the function’s value parameters by

solving a constraint system which relates formal with actual
argument types. Second, it propagates known types down
the syntax tree in order to infer some types of formal value
parameters and provide additional guidance to type param-
eter inference. For instance, if function f is known to have
type (Int → Int) → Int, then f (fun (x) x + 1) would be
well-typed, since the type of parameter x can be inferred to
be Int by propagating the known type Int → Int down the
tree.
This bidirectional local type inference can be formalized in
a type system where every type rule of F≤ is split into two
rules, one for the case where the result type is known, the
other for the case where it is unknown. Compared to a
type inference algorithm, a formalization of a type system
in terms of typing rules is attractive because it provides a
contract which can be understood by both users and im-
plementers of a programming language. For this reason,
bidirectional local type inference is put forward as the type
inference technology of the ML2000 draft proposal [ACF+].
The downward type propagation in bidirectional local type
inference works only if the propagated type is completely
known. If only some part of a type is known, downward
propagation is disabled and types are instead inferred by
propagating information from the leaves of the tree upwards.
For instance, if g is known to have type ∀a.(Int → a) → a,
then

g (fun (x) x + 1)

would not be well-typed since the type information known
from the outside about the anonymous function is only par-
tial. The outside type information is Int → a where the
instance type of the type variable a has yet to be deter-
mined.
In this paper we study a refinement of bidirectional local
type inference, where partial as well as total type informa-
tion can be propagated down the tree. Our approach types
essentially all programs which are typable under bidirec-
tional local type inference as well as other programs. For
instance, it can type the function application of g above.
Idioms like the one of g above arise naturally in Church
encodings of parameterized types. Consider for instance the
implementation of lists in a language with recursive records,
but without sum types. Taking the Church encoding of sum
types as a guide, we can implement pattern matching on
lists with visitor records [GHJV94]. That is, the list type
can be represented as a record with a single method, match,
which takes a list visitor as argument:



type List[a] = {
match [b] (v: ListVisitor[a, b]): b

}

A list visitor is a record which contains two function-valued
fields, which are here called caseNil and caseCons. The first
function is invoked when the encountered list is Nil, the sec-
ond when it is not.

type ListVisitor[a,b] = {
caseNil (): b,
caseCons (x: a, xs: List[a]): b

}

The implementations of the list constructors Nil and Cons
are then evident:

Nil [a] (): List[a] = {
match v = v.caseNil ()

}
Cons [a] (x: a, xs: List[a]): List[a] = {

match v = v.caseCons (x, xs)
}

As an example of a client using lists and list visitors, consider
the standard implementation of the append function.

append [c] (xs: List[c], ys: List[c]): List[c] =
xs.match {

caseNil () = ys,
caseCons (x, xs1) = Cons (x, append (xs1, ys))

}

Note the close correspondence between the application of
match and a pattern matching case expression in a language
with algebraic data types. The methods of the list visitor
correspond one-to-one to the branches of a case expression.
The same principle can be applied to represent systemati-
cally every sum type in a language which has only product
types. Most object-oriented languages fall into this category.
A systematic application of the visitor pattern can obviate
the need for a complication of the type structure in these
languages.
That this representation is feasible in practice has been
demonstrated in the case of the Pizza [OW97] and
GJ [BOSW98] compilers. The Pizza compiler, written in
Pizza, made heavy use of algebraic data types and pattern
matching. The GJ compiler was derived from the Pizza
compiler, but it was written in GJ, which does not have al-
gebraic data types. Most pattern matching expressions in
the Pizza compiler were represented by applications of the
visitor pattern in the GJ compiler. The switch did not lead
to a significant decrease in readability.
Unfortunately, bidirectional local type inference cannot type
the body of append above. It requires the parameter types
of the caseCons to be given explicitly:

append [c] (xs: List[c], ys: List[c]): List[c] =
xs.match {

caseNil () = ys,
caseCons (x : c, xs1 : List[c]) =

Cons (x, append (xs1, ys))
}

The reason is that the match method of lists is polymorphic.
Hence, no type information is propagated into the argument
of match and we have to write the parameter types of all
methods in the visitor explicitly. This type information is

redundant, since it can easily be derived from the type of
xs, the receiver of the match application. Most program-
mers would therefore classify the added type annotations as
annoying rather than helpful.
What’s required here is that we propagate the knowledge
that we are dealing with a ListVisitor into the body of the
list visitor record. This knowledge is only partial, since we
do not know yet the return type b of the type ListVisitor[a,b]
to be propagated. The inference system presented here can
deal with such partial type information and can therefore
type the first definition of append without auxiliary type
annotations in visitor methods.
A type which is completely known from the context of the
term to be typed and which is propagated inwards (down
the tree) is called “inherited”, in analogy to inherited at-
tributes in attribute grammars [Knu68]. By contrast, a type
which is propagated outwards (up the tree) is called “syn-
thesized”. We write ∨T for inherited types and ∧T for syn-
thesized types. In general, a type can have both inherited
and synthesized parts. For instance, the list visitor argu-
ment for the match method in the code of append would be
inferred to have type ∨ListVisitor[c, ∧List[c]]. This indicates
that we expect from the outside a ListVisitor with first type
parameter c, and that the second type parameter is found
to be List[c] by typing the visitor record itself.
A type without prefix is allowed to consist of arbitrary in-
herited or synthesized parts. To embed such a type T in
an inherited or synthesized context, we use a � prefix. For
example

∨(∧T → �U)

represents a function type where the function type construc-
tor is inherited, its argument type T is synthesized, and its
result type U is arbitrary.
The inherited and synthesized parts of a type can alter-
natively and more concisely be characterized by coloring
them. A second version of this paper intended for color
output [OZZ00] uses a red font for inherited parts of a type
and a blue font for synthesized parts. Black color is reserved
for types with arbitrary inherited or synthesized parts.
In the rest of this paper we develop these ideas in a type
system for second order lambda calculus with records and
subtyping. We first define a subtyping relation between col-
ored types which reflects the information given in the colors.
The subtyping relation is designed such that it allows the
definition of a subsumption rule. For instance, an inher-
ited record type ∨{x : a, y : b} cannot be a subtype of the
smaller inherited record type ∨{x : a}, because this would
mean that type information about y is “guessed” at a sub-
sumption step in the proof rather than being propagated
from further up the tree. On the other hand, it is true that

∧{x : a, y : b} ≤ ∨{x : a} .

We next define a type system that assigns colored types to
terms and show how it can be used to infer missing type
information for explicitly typed F≤. This type system es-
sentially subsumes the bidirectional local type inference sys-
tem of Pierce and Turner. A minor deviation is presented
at the end of section 6. We finally present a local type infer-
ence algorithm which can propagate partial type information
down the tree. The algorithm is not formulated with col-
ored types. Instead, we split a colored type into a prototype
that contains the information which is propagated down the

2



tree, and a type, which represents the completely computed
type of a term. Missing information in the prototype is ex-
pressed by the special symbol “?”. We have shown that the
algorithm is sound and complete with respect to the type
system.
The type system is presented here with second order lambda
calculus as the source language, but its ideas have much
wider applicability. For instance, we have used it in the
design and implementation of the type system for the func-
tional net language Funnel [Ode00], which is based on join
calculus [FG96]. Colored types are useful in general for de-
scribing information flow in polymorphic type systems with
propagation-based type inference.

Related Work There is a long thread of research on type
inference for extensions of the Hindley/Milner system or for
higher-order lambda calculus. A particularly large body of
work is concerned with the extensions we deal with, first-
class polymorphism and subtyping. Typically, type infer-
ence algorithms for extensions of the Hindley/Milner sys-
tem are complete, whereas algorithms for variants of second
order lambda calculus are incomplete, since the basic type
inference problem for F2 is known to be undecidable [Wel94].
Extensions of the Hindley/Milner system with first class
polymorphism [OL96, Jon97, GR99] distinguish between
polymorphic type schemes and monomorphic types. They
differ in the methods how to convert from one to the other.
Their type inference algorithm is always based on some
form of first-order unification. Similar in motivation to
these is Pfenning’s work on type inference for F2 [Pfe88],
which uses higher-order unification. Extensions of the Hind-
ley/Milner system with subtyping have also been stud-
ied [AW93, TS96, EST95, Pot96, Nor98, Pot98]. They are
usually based on constrained types [OSW99], which include
a set of subtype constraints as part of a type. A problem
in practice is that constraint sets can become very large.
Trifonov and Smith [TS96] as well as Pottier [Pot98] have
proposed schemes to address the problem. A more radical al-
ternative has been proposed by Nordlander [Nor98] and Pey-
ton Jones and Wansbrough [WJ00]. They approximate con-
strained types with unconstrained types in the generaliza-
tion step. Nordlander’s system [Nor98] heuristically unifies
type variables with their bounds. He uses a scheme similar
to ours to pass partial type information, treating wildcards
(that correspond to our “?”) as unique fresh type variables.
Roughly similar to subtype polymorphism, but incompara-
ble in expressive power, are Rémy’s row variables [Rém89].
A system which combines first-class polymorphism with row
variables, as studied in [GR99], can express many aspects of
F≤, and admits a complete and decidable type inference al-
gorithm based on unification. But the resulting type system
tends to become fragile and complex and the necessary en-
codings in user programs can be a bit roundabout.
The type inference problem for F≤, which combines subtyp-
ing with first-class polymorphism, has been addressed by
Cardelli’s [Car93] greedy algorithm, which unifies type vari-
ables with their bounds, as soon as these are encountered in
a subtype constraint. This usually works well in practice,
but it does not admit an independent characterization of the
output in a type system.
Clearly closest to our work is Pierce and Turner’s work on
local type inference [PT98]. The main extension over their
work is our refinement of type propagation. Whereas their
propagation of type information is “all or nothing”, we also

admit propagation of partial information via colored types.
Both forms of type inference rely largely on propagation
instead of (global) constraint solving.
A form of local type inference is also used in GJ [BOSW98].
In fact, GJ does not even have a type parameter construct
for polymorphic method applications. It relies totally on
local type inference for this task. Like Java, GJ requires
complete type signatures for all variables and parameters to
be given. The techniques discussed here are therefore not
directly relevant for type inference in GJ.
Propagation of information along the edges of a syntax tree
is also the idea underlying attribute grammars [Knu68].
Our synthesized types correspond to synthesized attributes
whereas inherited types correspond to inherited attributes.
Attribute grammars cannot express attributes that have in-
herited as well as synthesized components.
Litvinov [Lit98] develops a type system for Cecil [CT98],
which is comparable to ours. Cecil has both structural sub-
typing and subtyping by name and it can deal with recursive
bounds. However, the type inference is heuristic, with no
decidability result.
Xi and Pfenning [XP99] also use an “all or nothing” bidi-
rectional algorithm for type-checking. Their setting is an
extension of the Hindley-Milner type system by dependent
types. They use bidirectionality to infer quantifier elimina-
tion and introduction places.
The rest of this paper is structured as follows. Section 2 and
3 present the internal and external language of our calculus.
Section 4 presents an example, section 5 and 6 discuss the
subtype relation and the type system using colors. Section
7 outlines the local constraint resolution and section 8 the
type inference algorithm. Section 9 concludes.

2 Internal Language

We have an internal and an external language. The internal
language is essentially the fully typed second order lambda
calculus with records and subtyping. The external language
additionally provides constructs to elide some of the explicit
type information needed in the internal language, thus re-
ducing clutter in source programs. The task of type infer-
ence is to map the external into the internal language by
reconstructing the elided type information.
The internal language is based on F≤ and is almost the
same as the one of Pierce and Turner. The one extension
with respect to their system is the introduction of record
values and types, which help to streamline the encoding
of object-oriented programs. The terms, types, and type
environments of the internal language are given by the
following grammar

Terms E,F = x | fun[a](x : T )E

| F [T ](E) | E.x
| {x1 = E1, . . . , xn = En}

Types T, S,R = a | > | ⊥

| T
a→ S

| {x1 : T1, . . . , xn : Tn}
Environments Γ = x : T | ε | a | Γ,Γ′

3



(VAR) Γ ` x : Γ(x)

(ABS)
Γ, a, x : T ` E : S

Γ ` fun[a](x : T )E : T
a→ S

(APP)
Γ ` F : S

a→ T Γ ` E : S′ S′ <: [R/a]S

Γ ` F [R](E) : [R/a]T

(APP⊥)
Γ ` F : ⊥ Γ ` E : R

Γ ` F [T ](E) : ⊥

(SEL)
Γ ` F : {x1 : T1, . . . , xn : Tn}

Γ ` F.xi : Ti

(SEL⊥)
Γ ` F : ⊥

Γ ` F.xi : ⊥

(REC)
Γ ` F1 : T1 . . . Γ ` Fn : Tn

Γ ` {x1 = F1, . . . , xn = Fn} : {x1 : T1, . . . , xn : Tn}

⊥ <: T (BOT)

T <: > (TOP)

a <: a (VAR)

T1 <: T ′1 . . . Tn <: T ′n
{x1 : T1, . . . , xn : Tn, xn+1 : Tn+1, . . . , xm : Tm}

<: {x1 : T ′1, . . . , xn : T ′n}
(REC)

T1 <: T ′1 T2 <: T ′2

T ′1
a→ T2 <: T1

a→ T ′2
(FUN)

Figure 1: Γ ` E : T and T <: S

A term is a variable x, a function abstraction fun[a](x : T )
with formal type parameters a and value parameter x : T ,
a function application F [T ](E), a record constructor {x1 =
E1, . . . , xn = En} or a record selector E.x. The overbar sig-
nifies tupling, with a equivalent to a1, . . . , an for an unspec-
ified n. The presence of records allows us to restrict our lan-
guage to single-argument functions since polyadic functions
can be straightforwardly encoded: fun[a](x : T, y : T ′)E
is encoded as fun[a](r : {x : T, y : T ′})[r.x/x, r.y/y]E and

f [R](E,F ) is encoded as f [R]({x = E, y = F}).
A type is either a type variable a, a record type

{x1 : T1, . . . , xn : Tn} or a function type T
a→ S. Only func-

tion types are polymorphic, and we write the polymorphic

type variables over the function arrow; e.g. T
a→ S instead

of the more customary ∀a.T → S. We also have two types
⊥, > which are the least, respectively greatest type. Prim-
itive types like Int are treated as free type variables. We
identify types that are equivalent up to α-renaming as well
as record types with the same fields, possibly occurring in
different order. tv(E) and tv(T ) are the free type variables
of the term E and the type T respectively.
The type system for the internal language and the corre-
sponding subtype relation are presented in Figure 1. As in
bidirectional local type inference, the type system for the
internal language has no subsumption rule. This is only a
matter of presentation, since at the point where we have
to match types, in the application rule, we explicitly allow
that the argument’s type is a subtype of the formal argu-
ment type.

3 External Language

The external language is a superset of the internal language.
There are two additional syntactic constructs, which let one
omit type annotations.

E,F = ...

| fun(x)E lightweight abstraction

| F (E) lightweight application

Our abstractions are even a bit more lightweight than the
ones studied by Pierce and Turner [PT98], since we elide
formal type variables as well as argument types, whereas
they elide only argument types.
We say, a term E is a partial erasure of F , if it can be
obtained from F by erasing type information, i.e. replacing
abstractions by lightweight abstractions and applications by
lightweight applications.
We use colors in types to represent the direction from where
type information is propagated. Red color indicates a part
of the type which is known from the context (inherited),
blue color indicates a part of the type which is known from
the term itself (synthesized). In black-and-white versions of
the paper, colors are represented by up ticks ∧ and down
ticks ∨.
The syntax of synthesized types ∧T is:

∧T , ∧S, ∧R = ∧a | ∧> | ∧⊥
| ∧{x1 : ∧T1, . . . , xn : ∧Tn} | ∧(∧T

a→ ∧S)

Types which are propagated down the tree are called inher-
ited types. They are written ∨T and their syntax is the dual
of synthesized types.

∨T , ∨S, ∨R = ∨a | ∨> | ∨⊥
| ∨{x1 : ∨T1, . . . , xn : ∨Tn} | ∨(∨T

a→ ∨S)

Synthesized and inherited types are special cases of general
types which can have arbitrary inherited and synthesized
parts. They are prefixed with � (In the colored version,
they are black). The syntax of general types is:

�T , �S, �R = ∨a | ∨> | ∨⊥
| ∨{x1 : �T1, . . . , xn : �Tn} | ∨(�T a→ �S)

| ∧a | ∧> | ∧⊥
| ∧{x1 : �T1, . . . , xn : �Tn} | ∧(�T a→ �S)

Although we will use the adjectives “synthesized” and “in-
herited” in the following, we will often refer to the type’s
annotation as its “color”.
To prevent too many annotations, the prefixes ∨, ∧, and �
are interpreted structurally on the type. So ∧(T

a→ S) is

4



actually identical to ∧(∧T
a→ ∧S) and in the following we

will always use the former. Also, if we do not annotate the
outermost type constructor, we assume it to be �.
Type constructors are always inherited or synthesized. A
constructor annotated with � means that it is either in-
herited or synthesized. If we write the types �T , ∧T , ∨T
within a single statement, they are assumed to be all struc-
turally equivalent, differing only in color. If the same con-
structor occurs more than once annotated with �, as in
�{x1 : T1, . . . , xn : Tn} ≤ �{x1 : T ′1, . . . , xn : T ′n}, all occur-
rences of the constructor are assumed to have the same color.
Substitutions [T/a]S on types are defined to be color pre-
serving: [T/a]∧a = ∧T and [T/a]∨a = ∨T .
Types in type environments are always synthesized. This
ensures that the type of a variable is always determined by
its definition and not influenced by the context of its usage.

Γ = x : ∧T | ε | ∧a | Γ,Γ′

4 Example

We demonstrate the application of colored local type infer-
ence by means of an example, which details the definition
of a map function over the type Option[a] using the visitor
technique. The example is analogous to the list and list
visitor example presented in the introduction, except that
it avoids the use of recursive types (which are not covered
here). The types Option[a] and OptionVisitor[a,r] are defined
as follows:

type Option[a] = {
match [r] (v: OptionVisitor[a,r]): r

}
type OptionVisitor[a,r] = {

caseNone (): r,
caseSome (y: a): r

}

Constructors for Option[a] are as follows:

None = fun[s](): Option[s] {
match = fun(v) v.caseNone()

}
Some = fun[t](y: t): Option[t] {

match = fun(v) v.caseSome(y)
}

To make presentation easier, we have added some syntactic
sugar to our formal language definition. Type declarations
introduce abbreviations for record types. A function ab-
straction with a return type

fun (x: T ): T ′ (E)

is considered equivalent to a function with an explicity typed
body

fun (x: T ): (E: T ′) .

An explicitly typed expression such as E: T is in turn con-
sidered equivalent to (fun (x: T ) x) E.
Consider now a map function over optional values, which is
written in the external language as follows.

map = fun[c,d](f: c → d) fun(x: Option[c])

( (x: ∨{match : ∧OptionV isitor[c, r]
r→ ∧r}

.match): ∨(∧{
caseNone : {} → r
caseSome : c→ r

} r→ ∧r)

{
caseNone = (fun()

(None: ∨(∧{}
t→ ∧Option[t])())

: ∧Option[⊥])

: ∨({} → ∧Option[⊥]) ,

caseSome = (fun(y: ∧c)

(Some: ∨(∧t
t→ ∧Option[t])

(f:∨(∧c→ ∧d)(y:∨c)):∧d)

: ∧Option[d])

: ∨(c→ ∧Option[d])

} : ∨{ caseNone : {} → ∧Option[⊥]
caseSome : c→ ∧Option[d]

})

: ∧Option[d]

: ∧((c→ d)
c,d→ Option[c]→ Option[d])

Figure 2: map

map = fun[c,d](f: c → d) fun(x:Option[c])
x.match {

caseNone = fun() None(),
caseSome = fun(y) Some(f(y))

}

Figure 2 presents the same function together with internally
computed type information for terms and formal parame-
ters. Note that:

• In applications, we use the function’s argument type
for typing the actual argument. Here, the formal pa-
rameter of function x.match has the synthesized type
∧OptionV isitor[c, r], which expands to

∧{caseNone : {} → r, caseSome : c→ r}.

So for the actual argument, the visitor record, every-
thing is given from outside, except for the second pa-
rameter type r of OptionVisitor, which still needs to be
instantiated.

• Therefore, function caseSome has type

∨(c→ ∧Option[d]).

The argument type ∨c of the function is given from the
outside.

• Therefore, the type of the formal parameter x of
caseSome can be reconstructed; no explicit type an-
notation needs to be given.

5 Subtyping

Subtyping’s role is to mediate differences when type infor-
mation about a term is propagated both from the inside and
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T ≤ T T1 ≤ T2 T2 ≤ T3

T1 ≤ T3

∧a ≤ ∨a ∧⊥ ≤ ∨⊥ ∧> ≤ ∨> ∧⊥ ≤ ∨>

∧{x1 : �T1, . . . , xn : �Tn, xn+1 : ∨>, . . . , xm : ∨>} ≤ ∨{x1 : �T1, . . . , xn : �Tn} ∧(�T a→ �S) ≤ ∨(�T a→ �S)

∧⊥ ≤ ∨a ∧⊥ ≤ ∨{x1 : ∧⊥, . . . , xn : ∧⊥} ∧⊥ ≤ ∨(∧>
a→ ∧⊥)

∧a ≤ ∨> ∧{x1 : ∨>, . . . , xn : ∨>} ≤ ∨> ∧(∨⊥ a→ ∨>) ≤ ∨>

T1 ≤ T ′1 . . . Tn ≤ T ′n
{x1 : T1, . . . , xn : Tn} ≤ {x1 : T ′1, . . . , xn : T ′n}

T1<T
′
1 T2 ≤ T ′2

T ′1
a→ T2 ≤ T1

a→ T ′2

Figure 3: T ≤ S

(VAR)
Γ(x) = ∧T

Γ `c x : ∧T
(SUB)

Γ `c E : T T ≤ T ′

Γ `c E : T ′

(ABStp)
Γ, ∧a, x : ∧T `c E : S

Γ `c fun[a](x : T )E : ∧(T
a→ �S)

(ABS)
Γ, ∧a, x : ∧T `c E : S a 6∈ tv(E)

Γ `c fun(x)E : ∨(T
a→ �S)

(APPtp)
Γ `c F : ∨(∧S

a→ ∧T ) Γ `c E : [R/a]∨S

Γ `c F [R](E) : [R/a]∧T

(APP)

Γ `c F : ∨(∧S
a→ ∧T ) Γ `c E : S′ S′/ a

∨S

S′ ≤ [R/a]∨S [R/a]∧T ≤ T ′

∀R′, T ′′.(S′ ≤ [R
′
/a]∨S ∧ [R

′
/a]∧T ≤ T ′′ ∼ T ′ ⇒ [R/a]∧T ≤ [R

′
/a]∨T )

Γ `c F (E) : T ′

(SEL)
Γ `c E : ∨{x : �T}

Γ `c E.x : T
(REC)

Γ `c E1 : �T1 . . . Γ `c En : �Tn
Γ `c {x1 = E1, . . . , xn = En} : ∧{x1 : �T1, . . . , xn : �Tn}

Figure 4: Γ `c E : T

from the outside. A synthesized type constructor of a given
type matches with an inherited constructor of that same
type, or of a supertype.
The subtype relation ≤ for colored types is shown in Figure
3. Since subtyping is contravariant in the argument type
but colors are covariant, we have a second relation <, which
is the same as ≤ but with reversed colors.
In this subtype relation a structural change in the type al-
ways implies that the different constructors differ also in
color. Going from the subtype to the supertype, we always
change from synthesized to inherited. The synthesized type
∧(Int→ Int) for example is a subtype of ∧(Int→ ∨>) and
∧(Int→ Int) ≤ ∧(∨⊥ → ∨>) ≤ ∨>. But ∧(Int→ Int) is not
a subtype of ∧>. Here, the topmost constructors differ, but
they have the same color.
This ensures that we never guess types. Synthesized infor-
mation is really coming from inside, it cannot be constructed

using subsumption. A rule relating e.g. ∧⊥ ≤ ∧(S
a→ T )

would destroy this property, because it would synthesize a
function type which was guessed rather than propagated.
Similarly, inherited information must really be given from
the outside, it cannot be discarded by subsumption: If a
type constructor is inherited at a certain point in the term,
going outward we can discard the inherited constructor only
explicitly in a rule (the origin of the information), not by us-

ing subsumption.
The subtype rules in Figure 3 are designed such that they
derive smallest possible steps. Therefore we often rely on
transitivity for deriving subtype judgements. For instance,

∧⊥ ≤ ∨(Int→ {x : ∧⊥})

via
∧⊥ ≤ ∨(∧> → ∧⊥) ≤ ∨(Int→ {x : ∧⊥}).

The subtype relations <: for uncolored types of the internal
language and ≤ for colored types have the following
relationship:

Lemma 5.1 (Subtyping).

1. T ≤ S implies T <: S.

2. T <: S implies ∧T ≤ ∨S,

The first statement says that ≤ is a restriction of <:; i.e.
subsumption is sound in the internal language, where we
disregard colors when using <: on colored types. The sec-
ond statement together with subsumption guarantees that
a term of type ∧T will typecheck against each supertype of
T given completely from outside.
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As an example consider the typing of map. In the selection
x.match we know from outside that x has to have a type of
the form

∨{match : ∧T
r→ ∧T

′}.

If we look up x in the type environment, we find the synthe-
sized type

∧{match : OptionV isitor[a, r]
r→ r}.

Subsumption gives us that x also has type

∨{match : ∧OptionV isitor[a, r]
r→ ∧r}

which is of the required form.

6 Colored Type System

The type system for the external language is formulated in
terms of colored types. Typing rules for that system are
given in Figure 4. They include a subsumption rule (SUB)
which makes use of the subtpying relation defined in section
3. Most rules are straightforward.
Rule (VAR) is the usual tautology rule for variables. Vari-
ables in environments are always synthesized; i.e. their type
has been completely defined at the point of their definition.
Therefore, the (VAR) rule can be restricted to synthesized
types ∧T without loss of generality.
There are two rules for function abstraction. The rule
(ABStp) for function abstraction with an explicit argument
type produces a type with a synthesized arrow as top-
level constructor, whereas the rule (ABS) for lightweight
abstractions produces an inherited arrow. In other words,
lightweight abstractions require a function type to be passed
from the outside into the abstraction. The function’s result
type is in each case prefixed with a �, which tells us that
this type can be propagated in either direction.
In the untyped abstraction (ABS), the type T of the func-
tion’s argument is inherited. So it has to be known from the
context. Here is an example for this:

fun(x) x + 1 : ∨(Int→ ∧Int).

This function type indicates that the argument type must
be known from the context, whereas the result type is de-
termined by the function itself.
Because formal type parameters are not explicitly mentioned
in the term, we disallow their use in the function body (see
the side condition of rule (ABS)). Pierce and Turner do not
require this side condition since their system never elides
formal type parameters.
If the context does not provide the required information on
the argument type, we have to annotate it in the function
definition. Example:

fun(x : Int) x + 1 : ∧(Int→ Int)

As a consequence, that function has a purely synthesized
type.
There are also two rules for function application. The rule
(APPtp) for typed function application is straightforward.
The expression’s function part F needs to have a function
type. This is the only requirement propagated into the func-
tion expression; the rest of the function type has to be syn-
thesized. With this information we also know the type of

the argument E, so it gets a purely inherited type, which
just needs to be checked.
For example, a function f of type ∧((Int→ Int)→ Int) can
be applied to the term fun(x) x + 1, yielding

f (fun(x) x + 1) : ∧Int.

The type derivation of this judgement uses the subsumption
step

∨(Int→ ∧Int) ≤ ∨(Int→ Int)

for typing the function argument. This step weakens the
synthesized result type ∧Int of the argument to the same
type ∨Int in inherited form.
Rule (APPtp) is formulated in a way, which makes a separate
rule for the case where the function’s type is ⊥ superfluous:
Assume that the expression F has type ∧⊥. By subsumption

it also has type ∨(∧>
a→ ∧⊥). Now if the argument E is

typable with ∨>, we can conclude with (APPtp) that F (E)
has the expected type ∧⊥.
By far the most complicated rule in our system is rule
(APP) for function application without explicit type
parameters. This is not surprising, since this rule plays the
role of four different rules in Pierce and Turner’s system.
The premise of the rule requires again the function part F
of the expression to have a function type. The argument
expression is then checked to have a type which coincides
with the function’s (inherited) argument type, except for
occurrences of type parameters ai, where an arbitrary
synthesized type is required. This is expressed by the
condition S′/ a

∨S in the premise. The auxiliary relation / a
expresses a replacement of every occurrence of a variable in
a by an arbitrary type. We do not try to take account of
sharing at this point. Therefore different occurrences of the
same type variable can be associated with different types.
The relation is defined as follows.

∨T/ a
∨T ∧T/ a

∨ai

T1/ aT
′
1 . . . Tn/ aT

′
n

∨{x1 : �T1, . . . , xn : �Tn}/ a∨{x1 : �T ′1, . . . , xn : �T ′n}

T/ aT
′ S/ aS

′

∨(�T a→ �S)/ a
∨(�T ′ a→ �S′)

In other words, when type checking function arguments, we
use a weaker constraint than the one implied by the function
type, since different occurrences of the same type variable
can be matched with different types. The next two con-
ditions in the premise of rule (APP) tighten the constraint.

They require the existence of a tuple of types R, which, when
substituted for the type variables a in the formal argument
type ∨S, yield a type which is a supertype of the actual
argument type S′. Furthermore, when substituted for a in
the function’s result type ∧T , we require a type which is a
subtype of the whole rule’s result type T ′.
The final premise of rule (APP) requires that the tuple of

types R minimizes the function’s result type when compared
to any other solution which satisfies the same constraints.
The premise makes use of the auxiliary relation S ∼ T ,
which states that S and T coincide on their inherited parts.
∼ is defined as follows:

∧T ∼ ∧S ∨T ∼ ∨T
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T1 ∼ T ′1 . . . Tn ∼ T ′n
∨{x1 : �T1, . . . , xn : �Tn} ∼ ∨{x1 : �T ′1, . . . , xn : �T ′n}

T ∼ T ′ S ∼ S′
∨(�T a→ �S) ∼ ∨(�T ′ a→ �S′)

For example, suppose we have a function g of type

∧((Int→ a)
a→ a) which is again applied to our term

fun(x) x + 1. To show that

g (fun(x) x + 1) : ∧Int,

we choose R = Int in the rule (APP).
∨(Int→ ∧Int)/ a

∨(Int→ a) shows that the type of g
provides enough information to type the argument,
∨(Int→ ∧Int) ≤ ∨(Int→ Int) shows that actual and formal
argument type match, and trivially [Int/a]∧a ≤ ∧Int turns
∧Int into an appropriate result type. Clearly, Int is also the
optimal choice here.

However, with a function h:(a→ a)
a→ a we cannot find a

type for h (fun(x) x + 1). The condition S′/ a
∨(a→ a),

which requires that argument and result type of S′ are syn-
thesized, fails for S′ = ∨(Int→ ∧Int) and all its supertypes,
since they are all of the form ∨(Int→ S′′), where the argu-
ment type is inherited. This is not unexpected, since neither
h nor fun(x) x + 1 have information on the type of x.
As a further example for the use of the lightweight appli-
cation rule (APP), consider the function application f(x),
where f has the synthesized type

∧(a
a→ (a→ a))

and x has type ∧Int. Since ∧Int/ a
∨a, x is a matching ar-

gument. But f(x) fails to have a purely synthesized type.
The high level reason for this is that a occurs co- and con-
travariantly in the result type and thus we cannot make an
optimal choice for R. If we try to give f(x) the synthesized
type ∧(Int→ Int), we have to choose R = Int. The subtype
requirements of the rule (APP) are fulfilled, but R′ = > and

T ′′ = ∧(> → >) ∼ ∧(Int→ Int)

provide an alternative which also fulfills the requirements.
This falsifies the optimality constraint

∧(> → >) ≤ ∨(Int→ Int),

and therefore does not yield a valid typing. Other choices
for synthesized types fail for similar reasons.
On the other hand, we can verify that f(x) does have the
inherited type

∨(Int→ Int).

The choice R = Int is the same, but here the requirement

T ′′ ∼ ∨(Int→ Int)

on T ′′ is stronger, and the only choice left for R′ is Int.
Indeed,

[Int/a]∧(a→ a) ≤ [Int/a]∨(a→ a)

holds and the optimality constraint is satisfied. By analo-
gous reasoning, f(x) also has the inherited type

∨(⊥ → ⊥).

Rule (SEL) specifies the typing of record selection. The
premise of this rule uses an inherited record type construc-
tor, which reflects the fact that when typing expression E in
a selection E.x, we know that E must be a record with an x
field. The field’s type can be propagated in either direction.
Subsumption allows that the argument may have additional
fields. However, all these additional fields have to have syn-
thesized types. Allowing inherited types would enable us to
guess them.
Finally, rule (REC) specifies the typing of record construc-
tion. The record type constructor appears in synthesized
form in the conclusion of the rule, reflecting the fact that
in a record formation {x1 = E1, . . . , xn = En} we know the
shape of the constructed record without further context in-
formation. The types of the fields x1, . . . , xn, on the other
hand, can again be propagated in either direction.
For example, assume we want to type

{ u = fun(x) x + 1, v = 3 }.u

The record expression itself has type

∧{u : ∨(Int→ ∧Int), v : ∧Int}.

The selection rule expects that the qualifier has a record
type with one u component. We apply the subsumption
rule to get the record type into the proper form

∨{u : Int→ ∧Int}.

Here it was essential that the v component had a synthesized
type, because for subsumption we needed

∧Int ≤ ∨>.

We would not have been able to type

{ u = fun(x) x + 1, v = 3 }.v

since the type’s u component is not purely synthesized and

∨(Int→ ∧Int) 6≤ ∨>.

Soundness and Completeness

We have shown, that the type system is sound and complete
with respect to the internal language.

Theorem 6.1 (Soundness) If Γ `c E : T then there
exists a term F such that E is a partial erasure of F with
Γ ` F : S and S <: T .

Theorem 6.2 (Completeness). If Γ ` E : T then
Γ `c E : ∧T

Completeness is easy to show, as the rules for the lightweight
terms need not be considered. For soundness we insert the
derived argument types, formal type parameters, and actual
type parameters into E and show that the resulting term F
always has a unique type which is a subtype of T .
Note that the external language does not have a subject
reduction property. For instance

(fun(x: Int→Int) x) (fun(y) y + 1) 3

has type ∧Int. But, assuming standard reduction semantics,
this expression reduces to
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(fun(y) y + 1) 3

which does not have a type.
One can still show type soundness of the external language
by using type soundness for the internal language F≤ to-
gether with the soundness theorem 6.1, which relates the
two languages.

Variants

The optimality constraint in rule (APP) minimizes the in-
stantiated version of the function’s result type. Several other
variants of this constraint are also possible.

1. Taking account of inherited information. There is one
kind of term that bidirectional local type inference can type
in checking mode, but colored local type inference cannot.
To see this, consider again f(x) with f of type

∧(a
a→ (a→ a))

and x of type ∧Int. We saw that we can infer the types
∨(⊥ → ⊥) and ∨(Int→ Int), but we will explain now that
we cannot infer ∨(⊥ → Int). If we try to give f the type
∨(⊥ → Int), we find with R = Int and R = ⊥ two solutions
for the substitution [R/a], none of which is better than the
other. Bidirectional local type inference infers ⊥ → Int in
checking mode.
This case can only appear in a polymorphic application
where

• a type variable occurs co- and contravariantly in the
function’s result type (a in the example),

• this type variable can be chosen in different ways (⊥
and Int), and

• the type is given completely from outside.

The last two points mean in particular that the type given
from outside replaces co- and contravariant occurrences of
the type variable with different types (⊥ and Int in the ex-
ample).
We could solve this problem by using another optimality
criterion for (APP):

S′ ≤ [R
′
/a]∨S ∧ [R

′
/a]∧T ≤ T ′′ ∼ T ′ ⇒ ∧T

′ ≤ ∨T ′′.

Using this criterion, one could infer the type ∨(⊥ → Int)
for f(x). But implementing the new criterion comes at a
considerable cost in algorithmic complexity.

2. Extending optimality for function arguments. In prac-
tice, one might often want to restrict (APP) further instead
of generalizing it. The problem is that rule (APP) as well as
bidirectional local type inference do not always instantiate
all type variables to unique types. The case of f(x) above
is one where bidirectional local type inference succeeds, but
does not instantiate the type variable a. Another case is the

application g(x) where g has type ∧(a
a→ {}) and x has type

∧Int. Here, both colored and bidirectional local type infer-
ence would succeed without determining an instance type for
a. In fact, both Int and > would be possible instantiations.
This indeterminacy is not a problem for languages which are
parametric [Wad89], because in these languages the partic-
ular instantiation of a type variable cannot affect the result
of a computation.

But most real world languages are not parametric – over-
loading, dynamic type casts, or inheritance with overriding
all destroy parametricity. If parametricity does not hold,
it is mandatory that all type variables are instantiated to
unique types. In our case, this could be achieved by a
strengthened optimality constraint in rule (APP), which re-
quires that the argument type as well as the result type is
minimized:

S′ ≤ [R
′
/a]∨S ∧ [R

′
/a]∧T ≤ T ′′ ∼ T ′ ⇒

[R/a]∧T ≤ [R
′
/a]∨T ∧ [R/a]∧S ≤ [R

′
/a]∨S

This variation requires only minimal changes to the inference
algorithm.

3. Dealing gracefully with non-variant result types. The
optimality criteria given so far rely on a minimization of a
function’s result type. Hence, if the function’s result type
is non-variant in the type variable(s) to be instantiated, a
best solution often does not exist and type parameters have
to be given explicitly. As an example, consider a version of
the List type augmented by an append function:

type List[a] = {
match [b] (v: ListVisitor[a, b]): b
append (ys: List[a]): List[a]

}

This type is non-variant in the type variable a, since a ap-
pears covariantly and contravariantly in the type of append.1

Consider now a function singleton which creates a one-
element list.

singleton [a] (x: a): List[a] = Cons (x, Nil[a]())

Intutitively, one would expect

singleton(”abc”): List[String]

but with the optimality criteria given so far we get instead
an ambiguity type error. The problem is that both [String/a]
and [>/a] are legal instantiations of singleton’s type param-
eter, a. The two instantiations lead to two result types
List[String] and List[>], with neither of the two being better
than the other.
Ambiguities like these can be avoided by arbitrarily picking
one instantiation over the others. Our current implementa-
tion always picks minimal instance types. That is, it instan-
tiates type variables which are non-variant in the function
result type to the smallest type which is consistent with the
local constraints. With this modification, we get the ex-
pected type List[String] for singleton(”abc”). Our experience
indicates that the modification greatly reduces the number
of required type annotations in programs which deal with
non-variant types.
Even after the modification, there is in practice one more
rough edge in the treatment of non-variant types. Con-
sider an occurrence of a parameter-less constructor of a
non-variant type, such as Nil for non-variant List, and as-
sume that there is no inherited type information. With our
original optimality constraint, Nil() is ambiguous, since it
has types List[String] and List[>], among others. With our
modified optimality constraint, we get instead

1A purely co-variant version of append could be writ-
ten if type variables with lower bounds were permitted:
append[b >: a](ys: List[b]): List[b]. But a type system with bounds like
these is beyond the scope of the present paper.
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Nil(): List[⊥].

The problem is that List[⊥] is not a very useful type for Nil(),
because it is not a subtype of any other list type (assuming
that lists are non-variant). If one wanted a list of String, one
would need either a type parameter as in Nil[String](), or an
explicit type annotation, such as Nil(): List[String]. The lo-
cal type inference algorithm for GJ has a neat solution to
this problem by adding an “unknown type” ∗ to the internal
type language. Types with ∗-parameters can be implicitly
widened to types with arbitrary types at corresponding po-
sitions. Some syntactic restrictions prevent duplication of
∗-types and thus guarantee the soundness of the widening
rule. It is not clear yet, whether the GJ solution can be
generalized to the setting considered here.

7 Constraint Resolution

In the type inference we need to find the locally best solu-
tion for actual type parameters of polymorphic functions in
lightweight applications. This requires solving a set of sub-
type constraints. We can use the techniques introduced in
bidirectional local type inference.
An a-constraint set C is a set of inequations T <: a <: T ′,
where (tv(T ) ∪ tv(T ′)) ∩ a = ∅. We abbreviate T <: a <: >
by T <: a and ⊥ <: a <: T ′ by a <: T ′.
An a-substitution σ is an idempotent substitution with
dom(σ) = a. An a-substitution σ is a solution for an
a-constraint set C if we have T <: σa <: T ′ for each
T <: a <: T ′ in C.
During type inference we generate a-constraint sets from
subtype constraints containing a. Given types T and S
where only one of them contains a, the constraint generation
algorithm algorithm computes the minimal a-constraint set
C which guarantees S <: T . The judgement

`a S <: T ⇒ C

which describes this is directly taken from [PT98]. We have
for example:

`a,b Int→ Int <: a→ b⇒ {a <: Int, Int <: b}

The soundness and completeness properties shown by
Pierce and Turner [PT98] carry over to our system with
records.

Theorem 7.1 (Soundness). Suppose that either
tv(S) ∩ a = ∅ or tv(T ) ∩ a = ∅. If `a S <: T ⇒ C and σ is
a solution of C, then σS <: σT .

Theorem 7.2 (Completeness). Let σ be an a-
substitution and let S and T be types such that either
tv(S) ∩ a = ∅ or tv(T ) ∩ a = ∅. If σS ≤ σT then
`a S <: T ⇒ C for some C.

Now, given a constraint set C and a type R, σC,R is a so-
lution of C, which makes the type σC,RR minimal, i.e. for
each solution σ of C: σC,RR <: σR. σC,R is undefined, if
such a solution does not exist.
For the example above we get σ{a<:Int,Int<:b}{x : a, y : b} =
{x : ⊥, y : Int}. The algorithm of Pierce and Turner [PT98]
to compute σC,R also works for our system with records.

8 Type Inference

Type inference is organized as a recursive algorithm, which
does a depth-first traversal of the syntax-tree. The parame-
ters of the inference algorithm are the term E that we want
to type, a type environment Γ, and a prototype P , which
contains partial information on the type of E. The algorithm
fills in the information that P was lacking and returns the
complete type T . The type inference algorithm is given as a
deduction system for judgements of the form P,Γ `w E : T
(see Figure 5).
Prototypes P are regular types except that they may con-
tain an additional type constant “?” which indicates that
information about a part of the type is lacking. We say a
type T matches a prototype P if T is obtained from P by
replacing “?”’s with arbitrary types.
For example in the judgement

Int→ ?, ε `w fun(x)x : Int→ Int

the prototype Int → ? indicates that only the argument
type Int of the function is known from outside. But from
this argument type we conclude that x is of type Int and fill
it in as a result type.
For each inference judgement we can find a corresponding
judgement in the colored system by combining the informa-
tion of P and T into a single colored type. For instance, the
above judgement corresponds to

ε `c fun(x)x : ∨(Int→ ∧Int)

in the colored system. The parts present in the prototype
are now inherited, the rest is synthesized.
To reconstruct the colored type from the prototype P and
the type T in general, we use the operation T↗P . If T
matches P , then T↗P is structurally equal to T . It is in-
herited on the parts given in P , and it is synthesized, where
P has a ?. If T does not match the prototype P , we use the
smallest supertype of T which does. If such a type does not
exist, T↗P is undefined. Dually, T↘P is the greatest sub-
type of T which matches P , is inherited on the parts given
in P , and is synthesized elsewhere.
For instance

Int→ Int↗Int→ ? = ∨(Int→ ∧Int)

and

Int→ ⊥↗?→ ?→ ? = ∨(∧Int→ ∧> → ∧⊥).

It is crucial for the inference to keep the rule system deter-
ministic. Therefore there must not be a subsumption rule
in the inference system. Since for the inference the proto-
type is given and since there can be at most one supertype
of T which matches a given prototype P , namely T↗P , we
can always choose this one. Consequently, every derivable
inference judgement P,Γ `w E : T satisfies the invariant
that T matches P .
Most of the rules in Figure 5 are now straightforward to
derive. Where above we combined the prototype P and the
type T into a single colored type, we now have to do it the
other way and split a colored type into a prototype and a
regular type. For instance, in the rule (sel) we split the
colored type T from the (SEL) rule into P and T ′. Then
∨{x : �T} splits into {x : P} and {x : T ′}.
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(var) P,Γ `w x : Γ(x)↗P

(abstp,?)
?,Γ, a, x : T `w E : S

?,Γ `w fun[a](x : T )E : T
a→ S

(abstp,>)
>,Γ, a, x : T `w E : S

>,Γ `w fun[a](x : T )E : >

(abstp)
P ′,Γ, a, x : T `w E : S

P
a→ P ′,Γ `w fun[a](x : T )E : T

a→ S↗P a→ P ′
(abs)

P,Γ, a, x : T `w E : S

T
a→ P,Γ `w fun(x)E : T

a→ S

(apptp)
?,Γ `w F : S

a→ T [R/a]S,Γ `w E : [R/a]S

P,Γ `w F [R](E) : [R/a]T↗P
(apptp,⊥)

?,Γ `w F : ⊥ >,Γ `w E : S

P,Γ `w F [R](E) : ⊥↗P

(app)
?,Γ `w F : S

a→ T [?/a]S,Γ `w E : S′

`a S′ <: S ⇒ C1 `a T <: >↘P ⇒ C2

P,Γ `w F (E) : σC1∪C2,TT↗P
(app⊥)

?,Γ `w F : ⊥ >,Γ `w E : S

P,Γ `w F (E) : ⊥↗P

(sel)
{x : P},Γ `w F : {x : T}

P,Γ `w F.x : T
(rec?)

?,Γ `w F1 : T1 . . . ?,Γ `w Fn : Tn

?,Γ `w {x1 = F1, . . . , xn = Fn} : {x1 : T1, . . . , xn : Tn}

(rec>)
>,Γ `w F1 : T1 . . . >,Γ `w Fn : Tn

>,Γ `w {x1 = F1, . . . , xn = Fn} : >

(rec)
(P1,Γ `w F1 : T1) . . . (Pm,Γ `w Fm : Tm) (>,Γ `w Fm+1 : Tm+1) . . . (>,Γ `w Fn : Tn)

{x1 : P1, . . . , xm : Pm},Γ `w {x1 = F1, . . . , xn = Fn} : {x1 : T1, . . . , xm : Tm}

Figure 5: P,Γ `w E : T

The resulting rule (sel) illustrates the information flow used
in the type checking of (SEL). From outside we get infor-
mation about the type in P . From this we conclude that the
type of the record must match {x : P}. The type inference
for the record will tell us that its final type is {x : T}. From
that we know that the final type for the selection expression
is T .
For the record introduction we need three separate rules,
(rec), (rec?), and (rec>), because we have to consider three
different kinds of prototypes, {x1 : P1, . . . , xm : Pm}, ?, and
>. The reason is that in rule (REC) the types Ti may be
inherited or may have inherited components, although the
record type constructor is synthesized. Similarly, we have
to construct three rules (abstp), (abstp,?) and (abstp,>) for
(ABStp).
The most important case is again the untyped application
rule (app), where we have to infer type parameters. Here,
the descriptive premises in the type system are replaced by
local constraint resolution. First of all, passing [?/a]S as
a prototype for the actual argument guarantees S′/ a

∨S.
Then we generate two constraint sets C1 and C2 from the
two subtype requirements. C1 guarantees that a solution σ
fulfills S′ <: σS, which ensures that the type of the actual
argument is a subtype of the function’s argument type. C2

ensures σT <: >↘P , so that a solution will always have a
supertype matching P . Each solution of C1 ∪ C2 satisfies
both constraints. Choosing σC1∪C2,T guarantees that we
have a solution also satisfying the optimality constraint.
In the map example of Figure 2 x.match has type

{caseNone : {} → r, caseSome : c→ r} r→ r.

The type inference checks the actual visitor argument of
x.match with prototype

{caseNone : {} → ?, caseSome : c→ ?}.

This yields the final type

{caseNone : {} → Option[⊥], caseSome : c→ Option[d]}.

Thus, the resulting constraint system is

{Option[⊥] <: r,Option[d] <: r}.

The second constraint implies the first, so the optimal solu-
tion for result type r is

σC,r = [Option[d]/r].

Therefore, Option[d] is the complete type for the visitor ap-
plication.
We have shown soundness and completeness of the type
inference with respect to the colored type system.

Theorem 8.1 (Soundness). If P,Γ `w E : T then
Γ `c E : T↗P .

Theorem 8.2 (Completeness). If Γ `c E : T and
T ≤ T↗P then P,Γ `w E : T↗P .

The condition T ≤ T↗P in the completeness theorem
requires that the prototype P contains at least the infor-
mation which is present in the inherited part of T . For the
special case that T is purely inherited or purely synthesized,
completeness simplifies to the following corollary.

Corollary 8.3 (Completeness). If Γ `c E : ∧T then
?,Γ `w E : T . If Γ `c E : ∨T then T,Γ `w E : T .

The proofs for soundness and completeness proceed by in-
duction on the derivation. In the proof for completeness we
always regard the last non-subsumption step together with
all following subsumption steps.
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9 Conclusion

When designing the type system for the functional net lan-
guage Funnel [Ode00], we were looking for a type system
with deep subtyping and polymorphic records. Further, we
wanted to have a source language that avoided unnecessary
clutter due to type annotations.
First, we were looking into type systems with unification-
based type inference. Since deep subtyping and polymorphic
records together do not allow complete type inference, one
has to find restrictions on these two properties. The problem
with this approach is that every new language construct, or
even just a slight change of an existing language construct
is a possible threat to the decidability or tractability of the
type inference. It is even often difficult to see whether a
specific change leads to undecidability.
Using F≤ and a local type inference scheme proved to be
more robust and flexible in this respect. Here, we always
have the internal language as a starting point and fallback.
On top of this we can introduce lightweight versions of our
syntactic constructs that obviate the need for many type
annotations.
Since in Funnel programs the visitor pattern is used per-
vasively, it is important to be able to express visitors with
lightweight abstractions. The first main contribution of this
paper is a local type inference algorithm that is able to prop-
agate partial type information. This is essential for visitors,
but it is also helpful in eliding type information for other
language constructs.
Although our type inference algorithm can type the visitor
pattern, the local constraint resolution algorithm is the same
as the one by Pierce and Turner [PT98] and the complexity
of the algorithm is similar. The added power of our infer-
ence is hence solely derived from a more refined propagation
scheme.
The second main contribution of this paper is the presen-
tation of the type system as a colored deduction system.
Information flow during type inference is no longer explicit,
it is encoded as the color of the types. This yields a very
compact notation with little redundancy. Looking at the
discussion at the end of chapter 6, we can see that we often
have to change very little when regarding different versions
of the type system.
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first-class polymorphism for ML. Information and
Computation, 155:134–171, 1999.

[Jon97] Mark P. Jones. First-class polymorphism with type
inference. In Proc. 24th ACM Symposium on Prin-
ciples of Programming Languages, pages 483–496,
Paris, Jan 1997. ACM Press.

[Knu68] Donald E. Knuth. Semantics of context-free lan-
guages. Mathematical Systems Theory, 2(2):127–145,
February 1968.

[Lit98] Vassily Litvinov. Constraint-based polymorphism in
Cecil: Towards a practical and static type system. In
Proceedings of the 13th ACM Conference on Object-
Oriented Programming Systems, languages and ap-
plications, October 1998.

[Mey92] Bertrand Meyer. Eiffel, The Language. Object Ori-
ented Series. Prentice Hall, Engelwood Cliffs, 1992.

[NC97] Johan Nordlander and Magnus Carlsson. Reactive
objects in a functional language - an escape from the
evil I. In Proceedings of the Haskell Workshop, June
1997.

[Nor98] Johan Nordlander. Pragmatic subtyping in polymor-
phic languages. In Proceedings of the third ACM SIG-
PLAN International Conference on Functional Pro-
gramming (ICFP’98), September 1998.

[Ode00] Martin Odersky. Functional nets. In European Sym-
posium on Programming, Lecture Notes in Computer
Science. Springer Verlag, 2000. Invited Paper.

[OL96] Martin Odersky and Konstantin Läufer. Putting type
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