
LIPIcs Leibniz International Proceedings in Informatics

Fighting Bit Rot with Types
(Experience Report: Scala Collections)

M. Odersky1, A. Moors2∗

1 EPFL, Switzerland
martin.odersky@epfl.ch

2 K.U.Leuven, Belgium
adriaan.moors@cs.kuleuven.be

ABSTRACT. We report on our experiences in redesigning Scala’s collection libraries, focussing on
the role that type systems play in keeping software architectures coherent over time. Type systems
can make software architecture more explicit but, if they are too weak, can also cause code du-
plication. We show that code duplication can be avoided using two of Scala’s type constructions:
higher-kinded types and implicit parameters and conversions.

1 Introduction
Bit rot is a persistent problem in most long-running software projects. As software systems
evolve, they gain in bulk but lose in coherence and clarity of design. Consequently, main-
tenance costs increase and adaptations and fixes become more complicated. At some point,
it’s better to redesign the system from scratch (often this is not done and software systems
are left to be limping along because the risk of a redesign is deemed to high).

At first glance it seems paradoxical that bits should rot. After all, computer programs
differ from other engineering artefacts in that they do not deteriorate in a physical sense.
Software systems rot not because of rust or material fatigue, but because their requirements
change. Modifying a software system is comparatively easy, so there’s a low threshold to
accepting new requirements, and adaptations and extensions are common. However, if not
done right, every such change can obscure the original architectural design by introducing
a new special case.

Two aspects of software systems tend to accelerate bit rot: lack of explicit design and
code duplication. If the design of a system is not made explicit in detail it risks being under-
mined by changes down the line, in particular from contributors who are new to the system.
Code duplication, on the other hand, is problematic because necessary adaptations might
apply to one piece of code but might be overlooked in a duplicate.

In this paper we explore how a strong static type discipline affects bit rot, using the
Scala collection library as a case study. A collections library is interesting because it provides
a wide variety of operations, spread over several different interfaces of collections, and over
an even larger number of implementations. While there is a high degree of commonality

∗Supported by a grant from the Flemish IWT.

c© Odersky, Moors; licensed under Creative Commons License-NC-ND.
Foundations of Software Technology and Theoretical Computer Science (Kanpur) 2009.
Editors: Ravi Kannan and K. Narayan Kumar; pp 427–451
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany. 
Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2009.2338



428 EXPERIENCE REPORT: SCALA COLLECTIONS

among collection interfaces and implementations, the details vary considerably. Thus, ex-
tracting the commonalities is at the same time necessary and non-trivial.

At first glance, a static type system looks like a good basis for a robust collections library
because it can make design decisions explicit and checkable. On the other hand, if the
static type system is not flexible enough to capture some common pattern, it might force
conceptually sharable code to be repeated at each type instance. In the Scala collections
we experienced both of these effects. The first Scala collection library was designed with
a standard repertoire of generics and nominal inheritance and subtyping, close to what is
found in Java or C#. This made a number of constraints explicit, but forced some code to
be duplicated over many classes. As the number of contributors to the code base grew, this
duplication caused a loss of consistency, because additions were either not done in the most
general possible context, or necessary specialisations in subclasses were missed.

We recently set out to redesign the collection libraries with the aim of obtaining at the
same time better architectural coherence and better extensibility. The redesign makes crit-
ical use of two advanced forms of polymorphism available in Scala: higher-kinded types
and implicit parameters and conversions. Higher-kinded types allow to abstract over the
constructor of a collection, independently of its element type. Implicits give a library au-
thor the means to define new type theories which are adapted to the domain at hand. Both
played important roles in cleaning up the collections design.

In this paper we explain the architecture of the original collections library, and how we
addressed its shortcomings in the new Scala 2.8 collections. We then present the architecture
of Scala 2.8 collection framework, and show how it can be extended with new kinds of
collections. We also explain how higher-kinded types and implicits help in making the new
design explicit and checkable and in keeping extensions uniform and concise.

Related work The generalisation of first-order polymorphism to a higher-order system
was a natural step in lambda calculus [6, 18, 2]. This theoretical advance has since been
incorporated into functional programming languages. For instance, the Haskell program-
ming language [8] supports higher-kinded types, and integrates them with type classes [9],
the Haskell approach to ad-hoc polymorphism. However, to the best of our knowledge,
Scala is the only object-oriented language to integrate support for higher-kinded types. We
call this feature “type constructor polymorphism” [13]. Altherr et al. have proposed integ-
rating this into Java [4].

Implicits serve two purposes in Scala: they allow for retroactive extension using the
“pimp-my-library” pattern [15], and they extend the language with support for ad-hoc
polymorphism. Implicits are the minimal addition to an object-oriented language that is
required to encode Haskell’s type classes, and thus support that style of ad-hoc polymorph-
ism. They are more local than type classes in that the applicability of an implicit is controlled
by scope rules, similarly to the modular type class proposal for ML [5]. A type-class like ex-
tension has also been proposed for Java [21].

Ad-hoc polymorphism is similar to parametric polymorphism in the sense that it al-
lows operations to be applicable at varying types, except that, whereas parametrically poly-
morphic operations are truly indifferent to the concrete type that they are applied to, ad-hoc
polymorphic operations take the specific type into account and vary their behaviour accord-



ODERSKY, MOORS FSTTCS 2009 429

ingly. Java’s static overloading is a minimal implementation of this abstraction mechanism,
whereas Haskell type classes [20] allow for expressing much richer abstractions.

The literature on the design of collection frameworks has traditionally concentrated on
the Smalltalk language. The “blue book” [7] contains a description of Smalltalk’s original
collection hierarchy. Cook [3] analyses the interfaces inherent in that library which are of-
ten not expressed directly in Smalltalk’s single-inheritance hierarchy. Ducasse and Schärli
describe the use of traits to refactor the Smalltalk collection libraries [1]. Our experience con-
firms their conclusion that composition of traits is an important asset in the design of such
complex libraries. Scala traits differ from their formulation [19] in that Scala traits combine
aspects of symmetric trait composition with aspects of linear mixin composition. Neverthe-
less, the applicability of both forms of traits for modelling collections stays the same. Of
course, Smalltalk is dynamically typed, so none of the previously cited related works ad-
dresses the question how to type collections statically. Naftalin and Wadler describe Java’s
generic collections [14], which are largely imperative, and do not offer higher-order func-
tional operations, so that they pose less challenges to the type system.

Structure of the paper Section 2 gives a quick introduction of the parts of Scala neces-
sary to understand the examples in the rest of this paper. Section 3 presents the original
collection framework as it existed before the redesign and highlights its shortcomings. The
next two sections introduce key abstractions that form the foundation the new collections
library. Section 4 shows how to reduce code duplication by abstracting over the represent-
ation type of the collection, as well as over how to traverse and build it. Section 5 refines
this to abstractions over type constructors. However, neither approach suffices. Section 6
illustrates that we need ad-hoc polymorphism — piece-wise defined type functions — and
introduces implicits as a solution. Section 7 discusses in detail how implicits express piece-
wise defined type functions and integrates them with builders. Section 8 outlines the Scala
2.8 collections hierarchy, and shows how new collection implementations can be integrated
in the framework, illustrating the kind of code re-use that is achieved. Section 9 explains
how the pre-existing primitive classes for arrays and strings can be integrated in the collec-
tions framework. Section 10 concludes.

2 Syntactic Preliminaries
In Scala [16, 17], a class can inherit from one other class and several other traits. A trait is a
class that can be composed with other traits using mixin composition. Mixin composition is
a restricted form of multiple inheritance, which avoids ambiguities by linearising the graph
that results from composing traits that are themselves composites of traits. The difference
between an abstract class and a trait is that the latter can be composed using mixing inher-
itance†. We will use “class” to refer to traits and classes alike, but, for brevity, we will use
trait instead of abstract class in listings.

Identifiers in Scala may consist of symbolic as well as regular identifier characters.
Method calls like xs.++(ys) or xs.take(5) have more lightweight equivalents: xs ++

ys and xs take 5.

†The restrictions imposed on traits to allow mixin composition are not relevant for this paper.



430 EXPERIENCE REPORT: SCALA COLLECTIONS

foreach
Traversable

elements
Iterable

LinearSeq IndexedSeq

Array ArrayBufferList

SortedSet

HashMap TreeMap

SortedMap

length
apply

Seq
size
contains

Set
size
get

Map

Figure 1: Some Scala Collection Classes (2.8-specific classes are shaded)

Functions are first-class values in Scala. The type of functions from T to U is writ-
ten T⇒ U. A function literal is also written with an infix “⇒ ”, e.g. (x: Int)⇒ x + 1 for
anonymous successor function over type Int. Type inference often allows to elide the ar-
gument type of a function literal, as in x ⇒ x + 1. Alternatively, and even shorter, the
parameter position may be marked with an underscore, as in (_ + 1). Internally, func-
tions are represented as objects with apply methods. For instance, each of the three above
function literals is expanded to the object

new Function1[Int, Int] {
def apply(x: Int) = x + 1

}

Conversely, function application notation f(e) is available for every object f with an apply

method, and is in each case equivalent to f.apply(e).

3 Status Quo

Scala collections are characterised by four properties: they are object-oriented, optionally per-
sistent, generic, and higher-order.

Object-oriented Collections form a hierarchy, sharing common operations in base traits.
Figure 1 gives an outline of the collections hierarchy as it existed in Scala until version 2.7,
including some of the new classes from Scala 2.8, which have been shaded. At the top
of the original hierarchy is trait Iterable, which represents a collection by means of an
elements method that allows iterating over its elements. Specialisations of Iterable are



ODERSKY, MOORS FSTTCS 2009 431

Set for sets, Map for maps, and Seq for sequences. Some of these abstractions have further
specialisations.

For example, the classes SortedSet and SortedMap represent sets or maps which are
sorted, meaning that their iterators return their elements in the natural order of the element
type. Each collection abstraction has multiple implementations. Sequences in trait Seq can
be linked lists, arrays, list buffers, array buffers, or priority queues, to name but a few. The
class hierarchy gives rise to a subtyping relation (<: ) between collections. For instance, Set
is a subtype of Iterable, so that a set can be passed wherever an iterable is expected.

Most operations on collections are represented as methods in the collection classes. For
instance, to retrieve an iterator for the elements in c, one calls c.iterator. The length of
a sequence s can be queried using s.length, and s(i) (short for s.apply(i)) returns its
i’th element.

Optionally persistent Most collection abstractions in the library exists in two forms: mut-
able and immutable. Immutable collections are also called “persistent”; they offer opera-
tions that create new collections from existing ones incrementally, leaving the original col-
lections unchanged. For instance, xs ++ ys creates a new sequence which consists of all
elements of sequences xs, followed by all elements of sequence ys. The sequences xs and
ys remain unchanged. Or, m + (k -> v) creates a new map that augments map m with a
new key/value binding. The original map remains again unchanged. Mutable collections
introduce operations that change the collection in place. For instance, m.update(k, v)

updates a map at key k with the new value v (this can be expressed shorter as m(k) = v).

Generic Most collections are parametric in the type of their elements. For instance, the
type of lists with pairs of integers and strings as elements is List[(Int, String)], and
Map[String, List[String]] represents a map that takes keys of type String to values
of type List[String]. The interaction between subtyping and generics is controlled by
variance annotations. Most persistent collection types are covariant, whereas all mutable
collections are nonvariant.

Variance defines a subtyping relation over parameterised types based on the subtyping
of their element types. For example, class List[+T] introduces the type constructor List,
whose type parameter is covariant. This means that List[A] is a subtype of List[B] iff
A is a subtype of B. With a contravariant type parameter, this is inverted, so that class
OutputChannel[-T] entails that OutputChannel[A] is a subtype of OutputChannel[B] iff
A is a supertype of B. Without an explicit variance annotation, type arguments must be equal
for the constructed types to be comparable.

Some collections restrict their type parameter. Sets backed by red-black trees, for ex-
ample, are only defined for element types that can be ordered.

Higher-order Many operations on collections take functions as arguments. Examples are:
c.foreach(f), which applies the side-effecting function f to each element in c, the col-
lection of the elements in c that satisfy the predicate p can be computed as c.filter(p),



432 EXPERIENCE REPORT: SCALA COLLECTIONS

trait Iterable[+A] {
def filter(p: A ⇒ Boolean): Iterable[A] = . . .
def partition(p: A ⇒ Boolean) = (filter(p(_)), filter((!p(_))))
def map[B](f: A ⇒ B): Iterable[B] = . . .

}

trait Seq[+A] extends Iterable[A] {
override def filter(p: A ⇒ Boolean): Seq[A] = . . .
override def partition(p: A ⇒ Boolean) = (filter(p(_)), filter((!p(_))))
override def map[B](f: A ⇒ B): Seq[B] = . . .

}

Listing 1: Some methods of the Iterable and Seq traits

and c.map(f) produces a new collection with the same size as c, where each element is the
result of applying f to the corresponding element of c.
These operations are defined uniformly for all collections. When they return a collection
result, it is usually of the same class as the collection on which the operation was applied.
For instance if xs is a list then xs map (_ + 1) would yield another list, but if xs was an
array, the same call would again yield an array. The following interaction with Scala REPL
shows that this relationship holds for static types as well as computed values.

scala> val xs = List("hello", "world", "!")
xs: List[java.lang.String] = List(hello, world, !)

scala> xs map (_.length)
res0: List[Int] = List(5, 5, 1)

scala> val ys = Array("hello", "world", "!")
ys: Array[java.lang.String] = Array(hello, world, !)

scala> ys filter (_.length > 1)
res1: Array[java.lang.String] = Array(hello, world)

Base traits like Iterable offer the same operations as their concrete implementations, but
with the base trait as result type. For instance, the following REPL interactions show that ap-
plying map on an Iterable will yield Iterable again as the static result type (even though
the computed value is a subtype).

scala> val zs: Iterable[String] = xs
zs: Iterable[String] = List(hello, world, !)

scala> zs map (_.length)
res2: Iterable[Int] = List(5, 5, 1)

Ideally, a collections framework should also be highly extensible. It should be easy to add
new kinds of collections, or new implementations of existing collections. However, the com-
bination of genericity and immutable higher-order operations makes it difficult to achieve
good extensibility. Consider the filter method of trait Iterable in Listing 1, which must
be specialised in Seq so that it returns a Seq. Every other subclass of Iterable needs a



ODERSKY, MOORS FSTTCS 2009 433

similar re-implementation. In the original collection library such implementations had to
be provided explicitly by the implementer of a collection class.

Methods that could in principle be implemented uniformly over all collections also
need to be re-implemented. Consider for example the partition method of Listing 1,
which splits a collection into two sub-collections of elements according to whether they
satisfy a predicate p. This method could in principle be implemented just once in Iterable.
However, to produce the correct static return type, partition still has to be re-implemented
for every subclass, even though its definition in terms of filter is the same in each class.

The problem becomes even more challenging with an operation like map, also shown in
Listing 1. The map method does not return exactly the same type as the type it was invoked
on. It preserves the type constructor, but may apply it to a different element type.

Overall, these re-implementations pose a significant burden on collection imple-
menters. Taking sequences as an example, this type of collection supports about a hundred
methods, of which 20 return the collection type itself as some part of its result, like filter

and partition do, and of which another 10 return the collection type constructor at a dif-
ferent element type, like map does. Every new collection type would have to re-implement
at least these 30 methods.

In practice, this made maintaining and extending the library quite difficult. As the
collection implementation evolved and the number of its contributors increased, it lost
more and more of its consistency. Some operations would be added only to a specific sub-
class, even though they could in principle apply to more general collection types such as
Iterable. Sometimes, a specific implementation would fail to re-implement some of the
methods of the general collection class it inherited from, leading to a loss of type precision.
We observed a pronounced “broken windows” effect: classes of the library that already
contained ad-hoc methods would quickly attract more such methods and become more dis-
organised, whereas classes that started in a clean state tended to stay that way. Over the
course of some years the coherence of the collection design deteriorated to a state where we
felt a complete redesign was needed.

The intention was that the collection library redesign should largely keep to the original
APIs in order to maintain a high degree of backwards compatibility, and also because the
basic structure of these APIs proved to be sound. At the same time, the redesign should
provide effective guards against the kind of bit rot that affected the previous framework.
In the rest of this paper we explain how this goal was achieved and which of Scala’s more
advanced type constructs were instrumental in this.

4 Abstracting over the Representation Type

To avoid code duplication, collection classes such as Traversable or Seq inherit most of
their concrete method implementations from an implementation trait. These implement-
ation traits, which are denoted by the Like suffix, form a shadow hierarchy of the client-
facing side of the collections that were depicted in Figure 1. For example, SeqLike is the
implementation trait for Seq and TraversableLike underlies Traversable.

Listing 2 outlines the core implementation trait, TraversableLike, which backs the
new root of the collection hierarchy, Traversable. The type parameter Elem stands for the



434 EXPERIENCE REPORT: SCALA COLLECTIONS

package scala.collection
trait TraversableLike[+Elem, +Repr] {
protected[this] def newBuilder: Builder[Elem, Repr] // deferred
def foreach[U](f: Elem ⇒ U) // deferred

def filter(p: Elem ⇒ Boolean): Repr = {
val b = newBuilder
foreach { elem ⇒ if (p(elem)) b += elem }
b.result

}
}

Listing 2: An outline of trait TraversableLike

package scala.collection.generic
class Builder[-Elem, +To] {
def +=(elem: Elem): this.type = . . .
def result(): To = . . .
def clear() = . . .
def mapResult[NewTo](f: To ⇒ NewTo): Builder[Elem, NewTo] = . . .

}

Listing 3: An outline of the Builder class.

element type of the traversable whereas the type parameter Repr stands for its represent-
ation. An actual collection class, such as List, can simply inherit the appropriate imple-
mentation trait, and instantiate Repr to List. Thus, clients of List never see the type of
the underlying implementation trait. There are no constraints on Repr, so that it might be
instantiated to a type that is not a subtype of Traversable. Therefore, classes outside the
collections hierarchy such as String and Array can still make use of all operations defined
in this implementation trait.

The two fundamental operations in Traversable are foreach and newBuilder. Both
operations are deferred in class TraverableLike to be implemented in concrete subclasses.
The foreach operation takes a function parameter that is applied to every element in the
traversable collection. The result of the function paraneter is ignored, so functions are ap-
plied for their side effect only. The newBuilder operation creates a “builder” object, from
which new collections can be constructed. All other methods on of Traversable access the
collection using foreach. If they construct a new collection, they always do so through a
builder.

Listing 3 presents a slightly simplified outline of the Builder class. One can add an
element x to a builder b with b += x. There’s also syntax to add more than one element at
once, for instance b += (x, y) to add the two elements x and y, or b ++= xs to add all
elements in the collection xs. The result() method returns a collection from a builder. The
state of the builder is undefined after taking its result, but it can be reset into a new empty
state using clear(). Builders are generic in both the element type Elem and in the type To
of collections they return.



ODERSKY, MOORS FSTTCS 2009 435

Often, a builder can refer to some other builder for assembling the elements of a collec-
tion, but then would like to transform the result of the other builder, to give a different type,
say. This task is simplified by the method mapResult in class Builder. For instance, assum-
ing a builder bldr of ArrayBuffer collections, one can turn it into a builder for Arrays like
this:

bldr mapResult (_.toArray)

Given these abstractions, the trait TraversableLike can define operations like filter
in the same way for all collection classes, without compromising efficiency or precision

of type signatures. First, it relies on the newBuilder method to create an empty builder
that’s appropriate for the collection at hand, then, it uses foreach to traverse the existing
collection, appending every elem that meets the predicate p to the builder. Finally, the
builder’s result is the filtered collection.

5 Abstracting over the Collection Type Constructor
While abstracting over the representation type suffices to factor out exactly what varies in
filter’s result type across the collection hierarchy, it cannot capture the variation in map’s
result type. Recall that map is an operation that derives a collection from an existing one by
applying a user-supplied function to each of its elements. For example, if the given function
f goes from String to Int, and xs is a List[String], xs map f should yield a List[Int].
Likewise, if ys is an Array[String], then we expect ys map f to produce an Array[Int].

To provide a precise abstract declaration of map at the top of the collection hierarchy – let
alone a single implementation – we must refine the technique we developed in the previous
section. To make concrete only what distinguishes the individual subclasses, we must be
able to abstract over precisely what varies in these examples, and not more. Thus, we cannot
simply abstract over the representation type, as the variation (of map’s result type) across the
hierarchy is restricted to the type constructor that represents the collection – it does not fix
the type of its elements. The element type depends on the function supplied to map, not on
map’s location in the collection hierarchy. In other words, abstracting over the representation
type is too coarse, since we must be able to vary the element type in the map method.

More concretely, we need to factor out the type constructors List and Array. Thus,
instead of abstracting over the representation type, we abstract over the collection type con-
structor. Abstracting over type constructors requires higher-order parametric polymorph-
ism, which we call type constructor polymorphism in Scala [13]. This higher-order generalisa-
tion of what is typically called “genericity” in object-oriented languages, allows to declare
type parameters, such as Coll, that themselves take (higher-order) type parameters, such
as x in the following snippet:

trait TraversableLike[+Elem, +Coll[+x]] {
def map[NewElem](f: Elem ⇒ NewElem): Coll[NewElem]
def filter(p: Elem ⇒ Boolean): Coll[Elem]

}

Now, List[T] may extend TraversableLike[T, List] in order to specify that mapping
or filtering a list again yields a list, whereas the type of the elements depends on the opera-
tion. Of course, filter’s type can still be expressed as well.



436 EXPERIENCE REPORT: SCALA COLLECTIONS

Thus, with type constructor polymorphism, we can give a single declaration of map
that can be specialised without redundancy in List and Array. Moreover, as discussed in
Section 7, we can even provide a single implementation, where the only variation between
the different concrete subclasses is how to build that concrete collection.

However, important corner cases in the collection hierarchy exhibit variations that are
less uniform than the above examples. In turns out type constructor polymorphism is too
uniform to express the required ad-hoc variations. The next section discusses the general
case and presents the kind of polymorphism that our design hinges on.

6 Ad-hoc Polymorphism with Implicits
The examples from the previous section led us to believe that map’s result type is a simple
“straight-line” function from the concrete collection type (e.g., List or Array) and the type
of the transformed elements to the type of the resulting collection. We assumed we could
simply apply the type constructor of the generic class that represents the collection to the
result type of the mapped function, as mapping a function from Int to String over an
Array of Ints yields an Array[String].

We shall collect the variations in map’s type signature using a triple of types that relates
the original collection, the transformed elements, and the resulting collection. Type con-
structor polymorphism is restricted to type functions of the shape (CC[_], T, CC[T]), for
any type constructor‡ CC and any type T. This section discusses several important examples
that deviate from this pattern, and introduces implicits as a way of expressing them.

The regularity of transforming arrays and lists breaks down when we consider more
specialised collections, such as a BitSet, which must nonetheless fit in our hierarchy. Con-
sider the following interaction with the Scala REPL:

scala> BitSet(1,2,3) map (_ + 1)
res0: scala.collection.immutable.BitSet = BitSet(2, 3, 4)

With a little bit of foresight in Iterable, we can capture this pattern. However, it quickly
goes awry when we consider an equally desirable transformation:

scala> BitSet(1,2,3) map (_.toString+"!")
res1: scala.collection.immutable.Set[java.lang.String] = Set(1!, 2!,

3!)

Because the result type of toString is String and not Int, the result of the map cannot be
a BitSet. Instead a general Set[String] is returned. One might ask why the second map

should be admitted at all. Could one not restrict map on BitSet to mappings from Int to
Int? In fact, such a restriction would be illegal because BitSet is declared to be a subtype
of Set[Int] (and there are good modelling reasons why it should be). Set[Int] provides
a map operation which takes arbitrary functions over Int, so by the Liskov substitution
principle [10] every subtype of Set[Int] must provide the same operation.

This means that our type function for calculating map’s result type must now include
the following triples: (BitSet, Int, BitSet), and (BitSet, String, Set[String]),
and in fact, for every type T different from Int, (BitSet, T, Set[T]). A type function

‡More precisely, for any type constructor CC with one unbounded type parameter.



ODERSKY, MOORS FSTTCS 2009 437

that includes only the first triple (BitSet, Int, BitSet) can be expressed using type
constructor polymorphism, but the other ones are out of reach.
Finally, consider transforming maps:

scala> Map("a" -> 1, "b" -> 2) map { case (x, y) ⇒ (y, x) }
res2: scala.collection.immutable.Map[Int,java.lang.String] = Map(1 ->

a, 2 -> b)

scala> Map("a" -> 1, "b" -> 2) map { case (x, y) ⇒ y }
res3: scala.collection.immutable.Iterable[Int] = List(1, 2)

The first function swaps two arguments of a key/value pair. The result of mapping this
function is again a map, but now going in the other direction. In fact, the original yields the
inverse of the original map, provided it is invertible. The second function, however, maps
the key/value pair to an integer, namely its value component. In that case, we cannot form
a Map from the results, but we can still form an Iterable, which is the base trait of Map.

The irregular triples (Map[A, B], (A, B)⇒ (B, A), Map[B, A]) and — assuming
T is not (A, B) — (Map[A, B], (A, B)⇒ T, Iterable[T]) summarise these type signa-
tures, for arbitrary types A, B, and T.

Instead of admitting these ad-hoc type relations between the type of the collection, the
transformation and the result, we could restrict map to recover the regularity that is suppor-
ted by type constructor polymorphism. However, in doing so, we must respect the Liskov
substitution principle. This requires somehow “announcing” these restrictions abstractly in
the top-level type, Iterable. Expressing these restrictions quickly becomes unwieldy so
that this is not a viable alternative.

Shoehorning the collection hierarchy into what is supported by type constructor poly-
morphism would lead to an imprecise interface, code duplication, and thus, in the long
term, bit rot. To avoid these problems, we shall use the type system to express the required
piece-wise defined type functions precisely.

Piece-wise defined type functions are reminiscent of Java’s static overloading, as an
individual case (“piece”) of the type function corresponds to an overloaded method. How-
ever, Java’s static overloading can only express fairly trivial piece-wise defined type func-
tions, rendering it unsuitable for our purposes. Haskell’s type classes [20] provide a suffi-
ciently expressive, and principled solution. Scala introduces implicits, which, together with
Scala’s object-oriented constructs, support ad-hoc polymorphism in much the same way as
type classes.

Implicits

The foundations of Scala’s implicits are quite simple. A method’s last argument list may be
marked as implicit. If such an implicit argument list is omitted at a call site, the compiler
will, for each missing implicit argument, search for the implicit value with the most specific
type that conforms to the type of that argument. For a value to be eligible, it must have been
marked with the implicit keyword, and it must be in the implicit scope at the call site. For
now, the implicit scope may simply be thought of as the scope of a regular value, although
it is actually broader.



438 EXPERIENCE REPORT: SCALA COLLECTIONS

abstract class Monoid[T] {
def add(x: T, y: T): T
def unit: T

}

object Monoids {
implicit object stringMonoid extends Monoid[String] {
def add(x: String, y: String): String = x.concat(y)
def unit: String = ""

}
implicit object intMonoid extends Monoid[Int] {
def add(x: Int, y: Int): Int = x + y
def unit: Int = 0

}
}

Listing 4: Using implicits to model monoids

def sum[T](xs: List[T])(implicit m: Monoid[T]): T =
if(xs.isEmpty) m.unit
else m.add(xs.head, sum(xs.tail))

Listing 5: Summing lists over arbitrary monoids

Listing 4 introduces implicits by way of a simple example. It defines an abstract class of
monoids and two concrete implementations, StringMonoid and IntMonoid. The two im-
plementations are marked with an implicit modifier. Listing 5 implements a sum method,
which works for arbitrary monoids. sum’s second parameter is marked implicit. Because
of that, sum’s recursive call does not need to pass along the m argument explicitly; it is in-
stead provided automatically by the Scala compiler.

After having entered the code snippets in Listings 4 and 5 into the Scala REPL, we can
bring the implicit values in the Monoid object into scope with import Monoids._. This
makes the two implicit definitions of stringMonoid and intMonoid eligible to be passed as
implicit arguments, so that one can write:

scala> sum(List("a", "bc", "def"))
res0: java.lang.String = abcdef

scala> sum(List(1, 2, 3))
res1: Int = 6

These applications of sum are equivalent to the following two applications, where the
formerly implicit argument is now given explicitly.

sum(List("a", "bc", "def"))(stringMonoid)
sum(List(1, 2, 3))(intMonoid)

Implicits are closely related to Haskell’s type classes. Where Scala uses a regular class such
as Monoid, Haskell would use a type class. Implicit values such as stringMonoid and



ODERSKY, MOORS FSTTCS 2009 439

intMonoid correspond to instance declarations in Haskell. Implicit parameters correspond
to contexts in Haskell. Conditional instance declarations with contexts in Haskell can be
modelled in Scala by implicit functions that themselves take implicit parameters. For in-
stance, here is a function defining an implicit lexicographical ordering relation on lists which
have element types that are themselves ordered.

implicit def listOrdering[T](xs: List[T])(implicit elemOrd: Ordering[T]) =
new Ordering[List[T]] {
def compare(xs: List[T], ys: List[T]) = (xs, ys) match {
case (Nil, Nil) ⇒ 0
case (Nil, _) ⇒ -1
case (_, Nil) ⇒ 1
case (x :: xs1, y :: ys1) ⇒
val ec = elemOrd.compare(x, y)
if (ec != 0) ec else compare(xs1, ys1)

}
}

7 Implicits for Scala’s collections
The most interesting application of implicits in our design of Scala’s collections library is in
the typing of methods like map, which require expressive ad-hoc polymorphism. We have
seen that the result type of BitSet’s map method can be specified in terms of triples that
relate the source collection, the target element type, and the resulting collection: (BitSet,
Int, BitSet), (BitSet, T, Set[T]). These triples define a piece-wise function on types,
encoded as the implicit instances of the trait CanBuildFrom in Listing 6.

The listing first defines the trait CanBuildFrom, which takes three type parameters: the
Collection type parameter indicates the collection from which the new collection should
be built, the NewElem type parameter indicates the new element type of the collection to be
built, and the Result type parameter indicates the type of that collection itself. The trait has
a single deferred method, apply, which produces a Builder object that constructs a Result
collection from NewElem elements.

The listing then shows the map method in class TraversableLike. This method is
defined for every function result type B and every collection type To such that there exists
an implicit value of CanBuildFrom[Repr, B, To], where Repr is the representation type
of the current collection. In other words, the triple (Repr, B, To) must be populated by a
CanBuildFrom value. We’ll come back to the implementation of map later in this section.

Two such CanBuildFrom values are shown in the companion objects –– the objects that
are co-defined with the classes of the same name – of classes Set and BitSet. Scala’s scope
rules for implicits include the companion object of a type in the implicit scope for that type.
More precisely, when searching for an implicit value of type T, we consider all types S that
form part of T, as well as all the supertypes of any such part S. The companion objects of
all these types may contain implicit definitions which are then in the implicit scope for T.
For instance, when searching for an implicit value of type CanBuildfrom[BitSet, Int,

?To], the BitSet object is in the implicit scope because BitSet forms part of the type of the
requested implicit. The Set object is also in the implicit scope because Set is a superclass of



440 EXPERIENCE REPORT: SCALA COLLECTIONS

trait CanBuildFrom[-Collection, -NewElem, +Result] {
def apply(from: Collection): Builder[NewElem, Result]

}

trait TraversableLike[+A, +Repr] {
def repr: Repr = . . .
def foreach[U](f: A ⇒ U): Unit = . . .
def map[B, To](f: A⇒B)(implicit cbf: CanBuildFrom[Repr, B, To]): To = {
val b = cbf(repr) // get the builder from the CanBuildFrom instance
for (x <- this) b += f(x) // transform element and add
b.result

}
}
trait SetLike[+A, +Repr] extends TraversableLike[A, Repr] { }
trait BitSetLike[+This <: BitSetLike[This] with Set[Int]] extends SetLike[

Int, This] {}

trait Traversable[+A] extends TraversableLike[A, Traversable[A]]
trait Set[+A] extends Traversable[A] with SetLike[A, Set[A]]
class BitSet extends Set[Int] with BitSetLike[BitSet]

object Set {
implicit def canBuildFromSet[B] = new CanBuildFrom[Set[_], B, Set[B]] {
def apply(from: Set[_]) = . . .

}
}

object BitSet {
implicit val canBuildFromBitSet = new CanBuildFrom[BitSet, Int, BitSet] {
def apply(from: BitSet) = . . .

}
}

object Test {
val bits = BitSet(1, 31, 15)
val shifted = bits map (x ⇒ x + 1)
val strings = bits map (x ⇒ x.toString)

}

Listing 6: Encoding the CanBuildFrom type-relation for BitSet



ODERSKY, MOORS FSTTCS 2009 441

BitSet.
Consider now the Test object in Listing 6. It contains two applications of map on the

BitSet value bits. In the first case, the implicit parameter of the map method has a type
of the form CanBuildfrom[BitSet, Int, ?To] because the collection on which the map

is performed is a BitSet and the result type of the new collection is Int. Both shown
CanBuildFrom values are in the implicit scope, and both match the type pattern that is
searched. In this case, the canBuildFromBitSet value in object BitSet is the more specific
of the two, and will be selected.

Implicit resolution uses Scala’s standard member resolution rules for overloading in
order to disambiguate between several applicable implicits, such as canBuildFromSet and
canBuildFromBitSet in the example above. Member resolution orders equivalent mem-
bers according to where they are defined in the subclassing hierarchy, with definitions in
class A preceding over those in class B if A is a subclass of B. This ordering is extended to
companion objects, which can be seen as forming a parallel hierarchy to the corresponding
class hierarchy, somewhat like meta-classes in Smalltalk.

In the second case, the implicit parameter of the map method has a type of the form
CanBuildfrom[BitSet, String, ?To] because the result type of the second function ar-
gument is String. In this case, only the implicit value in Set is applicable and will be
selected.

Type inference takes the availability of an implicit value into account. Thus, when
inferring the type arguments for map, the To type parameter is constrained by the search for
the applicable implicit. In the example, shifted gets type BitSet since the implicit value
canBuildFromBitSet is selected, and for that to be a valid argument for map’s cbf implicit
type parameter, its To type parameter must be BitSet. The definition of strings, on the
other hand, passes canBuildFromBitSet to the map application, with Set[String] as third
type pararameter. Consequently, Set[String] is also the result type of that application.

The second application of map, stored in strings, explains why CanBuildFrom’s first
type parameter is contravariant§: an implicit of CanBuildFrom[BitSet, String, ?To] is
required, where ?To is a type inference variable. We have that BitSet is a subtype of Set. By
contravariance of CanBuildFrom, this means that CanBuildFrom[Set, String, ?To] is a
subtype of CanBuildFrom[BitSet, String, ?To]. Hence, CanBuildFrom[Set, String

, ?To] can be substituted for the required CanBuildFrom[BitSet, String, ?To], and
?To is inferred to be Set[String].

Finding Builders at Run Time

We have seen that map can be given a precise type signature in TraversableLike, but how
do we implement it? Since map has a value of type CanBuildFrom[From, Elem, To],
the idea is to let the implicit canBuildFrom values produce builder objects of type
Builder[Elem, To] that construct collections of the right kind.

However, there is one minor snag. Since implicit resolution is performed at compile
time, it cannot take dynamic types into account. Nonetheless, we expect a List to be created

§The variance of the other type parameters will become apparent in the next section.



442 EXPERIENCE REPORT: SCALA COLLECTIONS

when the dynamic type is List, even if the static type information is limited to Iterable.
This is illustrated by the following interaction with the Scala REPL:

scala> val xs: Iterable[Int] = List(1, 2, 3)
xs: Iterable[Int] = List(1, 2, 3)

scala> xs map (x ⇒ x * x)
res0: Iterable[Int] = List(1, 4, 9)

If CanBuildFrom solely relied on the triple of types (Iterable[Int], Int, Iterable[

Int]) to provide a builder, it could not do better than to statically select a Builder[Int,

Iterable[Int]], which in turn could not build a List. Thus, we add a run-time indirection
that makes this selection more dynamic.

The idea is to give the applymethod of CanBuildfrom access to the dynamic type of the
original collection via its from argument. An instance cbf of CanBuildFrom[Iterable[Int
], Int, Iterable[Int]], is essentially a function from an Iterable[Int] to a Builder

[Int, Iterable[Int]], which constructs a builder that is appropriate for the dynamic
type of its argument. This is shortly explained in more detail. We first discuss how map is
implemented in terms of this abstraction.

The implementation of map in Listing 6 is quite similar to the implementation of filter
shown in Listing 2. The interesting difference lies in how the builder is acquired: whereas
filter called the newBuilder method of class TraversableLike, map uses the instance
of CanBuildFrom that is passed in as a witness to the constraint that a collection of type
To with elements of type B can be derived from a collection with type Repr. This nicely
brings together the static and the dynamic aspects of implicits: they express rich relations
on types, which may be witnessed by a run-time entity. Thus, static implicit resolution
resolves the constraints on the types of map, and virtual dispatch picks the best dynamic
type that corresponds to these constraints.

Most instances of CanBuildFrom use the same structure for this virtual dispatch, so that
we can implement it in GenericTraversableTemplate, the higher-kinded implementation
trait for all traversables, as shown in Listing 7.

Let’s see what happens for a concrete call xs.map(f), where f has static type A ⇒ B,
and xs’s static type is a subtype of GenericTraversableTemplate[A, CC]. The compiler
will statically select an instance of CanBuildFrom[CC[A], B, CC[B]] for the implicit ar-
gument cbf. The call cbf(this) in map will actually be cbf(xs), which, assuming cbf

was a standard instance of GenericCanBuildFrom[B], evaluates to xs.genericBuilder[

B], and finally xs.companion.newBuilder[B]. Thus, whatever the dynamic type of xs, it
must simply implement companion to point to its factory companion object, and implement
the newBuilder method there.

8 Scala 2.8 Collections Hierarchy
In this section we give an architectural summary of the 2.8 collections framework and dis-
cuss how it can be extended by implementers of new collection classes.

Figure 1 gives an overview of some common collection classes. Classes that were added
in the 2.8 framework are shaded in that figure. At the top of the collection hierarchy is now



ODERSKY, MOORS FSTTCS 2009 443

trait GenericCompanion[+CC[X] <: Traversable[X]] {
def newBuilder[A]: Builder[A, CC[A]]

}

trait GenericTraversableTemplate[+A, +CC[X] <: Traversable[X]] {
// The factory companion object that builds instances of class CC.
def companion: GenericCompanion[CC]

// The builder that builds instances of CC at arbitrary element types.
def genericBuilder[B]: Builder[B, CC[B]] = companion.newBuilder[B]

}

trait TraversableFactory[CC[X] <: Traversable[X] with
GenericTraversableTemplate[X, CC]]

extends GenericCompanion[CC] {
// Standard CanBuildFrom instance for a CC that’s a traversable.
class GenericCanBuildFrom[A] extends CanBuildFrom[CC[_], A, CC[A]] {
def apply(from: CC[_]) = from.genericBuilder[A]

}
}

Listing 7: GenericCanBuildFrom

class Traversable, which implements all accesses to its data via its foreach method. Class
Traversable is extended by class Iterable, which implements all traversals by means
of an iterator. Iterable is further extended by classes Seq, Set, and Map. Each of these
classes has further subclasses that capture some particular trait of a collection. For instances,
sequences Seq are split in turn into LinearSeq for linear access sequences such as lists and
IndexedSeq for random access sequences such as arrays.

All collection classes are kept in a package scala.collection. This package has three
subpackages: mutable, immutable, and generic. Most collections exist in three forms,
depending on their mutability.

A collection in package scala.collection.immutable is guaranteed to be immutable
for everyone. That means one can rely on the fact that accessing the same collection value
over time will always yield a collection with the same elements.

A collection in package scala.collection.mutable is known to have some opera-
tions that change the collection in place.

A collection in package scala.collection can be either mutable or immutable. For
instance, collection.Seq[T] is a superclass of both collection.immutable.Seq[T]

and collection.mutable.Seq[T]. Generally, the root collections in package scala.

collection define the same interface as the immutable collections, and the mutable col-
lections in package scala.collection.mutable typically add some destructive modific-
ation operations to this immutable interface. The difference between root collections and
immutable collections is that a user of an immutable collection has a guarantee that nobody
can mutate the collection, whereas users of root collections have to assume modifications by



444 EXPERIENCE REPORT: SCALA COLLECTIONS

package mycollection
import collection.generic.{CanBuildFrom, GenericTraversableTemplate,

GenericCompanion, SeqFactory}
import collection.mutable.{Builder, ArrayBuffer}

class Vector[+A](buf: ArrayBuffer[A])
extends collection.immutable.IndexedSeq[A]

with collection.IndexedSeqLike[A, Vector[A]]
with GenericTraversableTemplate[A, Vector] {

override def companion: GenericCompanion[Vector] = Vector
def length = buf.length
def apply(idx: Int) = buf.apply(idx)

}

object Vector extends SeqFactory[Vector] {
implicit def canBuildFrom[A]: CanBuildFrom[Vector[_], A, Vector[A]] =
new GenericCanBuildFrom[A]

def newBuilder[A]: Builder[A, Vector[A]] =
new ArrayBuffer[A] mapResult (buf ⇒ new Vector(buf))

}

Listing 8: A sample collection implementation.

others, even though they cannot do any modifications themselves.
The generic package contains building blocks for implementing various collections.

Typically, collection classes defer the implementations of some of their operations to classes
in generic. Users of the collection framework, on the other hand, should need to refer at
classes in generic only in exceptional circumstances.

Integrating new collections

The collection framework is designed to make it easy to add new kinds of collections to
it. As an example, Listing 8 shows a simple yet complete implementation of immutable
vectors.

The Vector trait inherits from three other traits. It inherits from scala.collection

.immutable.IndexedSeq to specify that Vector is a subtype of a random access se-
quence and is immutable. It inherits most of implementations of its methods from the
IndexedSeqLike trait, specialising the representation type to Vector[A]. Finally, Vector
mixes in GenericTraversableTemplate, and instantiates the type parameter that abstracts
over the collection type constructor to Vector.

Only three abstract methods remain to be implemented. Two of these, length and
apply, are related to querying an existing sequence, while the third, companion, is involved
in creating new sequences. The method length yields the length of the sequence, and
apply returns an element at a given index. These two operations are implemented in trait
Vector. For simplicity’s sake they simply forward to the same operation of an underlying
ArrayBuffer. Of course, the actual implementation of immutable vectors is considerably



ODERSKY, MOORS FSTTCS 2009 445

more refined algorithmically, and more efficient.
The third method, companion, is declared in GenericTraversableTemplate. Vector

defines it to refer to its companion object, which specifies the CanBuildFrom case for
Vector. This ensures that calling map on a Vector yields a Vector. As discussed in Sec-
tion 7, the implicit value that populates the CanBuildFrom relation on types is an instance
of GenericCanBuildFrom, which delegates the creation of the Vector-specific builder to
the newBuilder method. This method creates an array buffer (which is a specialised kind
of builder), and transforms results coming out of this buffer into instances of Vector. That’s
the minimal functionality required for instances of GenericTraversableTemplate.

As an added convenience, the Vector object inherits from class SeqFactory which
makes available a large set of creation methods for vectors.

With the setup as described in Listing 8 the Vector class is fully integrated into the col-
lections hierarchy. It inherits all methods defined on indexed sequences and all construction
methods for such sequences can be applied to it. The following REPL script shows some of
the operations that are supported. First, here are some ways to construct vectors:

import mycollection.Vector

scala> val v = Vector(1, 2, 3)
v: mycollection.Vector[Int] = Vector(1, 2, 3)

scala> val ev = Vector.empty
ev: mycollection.Vector[Nothing] = Vector()

scala> val zeroes = Vector.fill(10)(0)
zeroes: mycollection.Vector[Int] = Vector(0, 0, 0, 0, 0, 0, 0, 0, 0,

0)

scala> val squares = Vector.tabulate(10)(x ⇒ x * x)
squares: mycollection.Vector[Int] = Vector(0, 1, 4, 9, 16, 25, 36,

49, 64, 81)

scala> val names = Vector("Jane", "Bob", "Pierre")
names: mycollection.Vector[java.lang.String] = Vector(Jane, Bob,

Pierre)

scala> val ages = Vector(21, 16, 24)
ages: mycollection.Vector[Int] = Vector(21, 16, 24)

To continue, here are some operations on vectors.

scala> val persons = names zip ages
persons: mycollection.Vector[(java.lang.String, Int)] =

Vector((Jane,21), (Bob,16), (Pierre,24))

scala> val (minors, adults) = persons partition (_._2 <= 18)
minors: mycollection.Vector[(java.lang.String, Int)] =

Vector((Bob,16))
adults: mycollection.Vector[(java.lang.String, Int)] =

Vector((Jane,21), (Pierre,24))



446 EXPERIENCE REPORT: SCALA COLLECTIONS

scala> val adultNames = adults map (_._2)
adultNames: mycollection.Vector[Int] = Vector(21, 24)

scala> val totalAge = ages reduceLeft (_ + _)
totalAge: Int = 61

To summarise: To fully integrate a new collection class into the framework one needs to pay
attention to the following points:

1. Decide whether the collection should be mutable or immutable.
2. Pick the right base classes for the collection.
3. Inherit from the right template trait to implement most collection operations.
4. If one wants map and similar operations return instances of the collection type, provide

an implicit builder factory in the companion object.
5. If the collection should have dynamic type adaptation for map and operations like it,

one should also inherit from GenericTraversableTemplate, or implement equival-
ent functionality.

A simpler scheme is also possible if one does not need bulk operations like map or filter
to return the same collection type. In that case one can simply inherit from some general
collection class like Seq or Map and implement any additional operations directly.

9 Dealing with Arrays and Strings

The integration of arrays into the Scala collection library has turned out to be very chal-
lenging. This has mostly to do with the clash between requirements and the constraints
imposed by Java and the JVM. On the one hand, arrays play an important role for interop-
eration with Java, which means that they need to have the same representation as in Java.
This low-level representation is also useful to get high performance out of arrays. But on
the other hand, arrays in Java are severely limited.

First, there’s actually not a single array type representation in Java but nine different
ones: one representation for arrays of reference type and another eight for arrays of each of
the primitive types byte, char, short, int, long, float, double, and boolean. Unfortu-
nately, java.lang.Object is the most specific common type for these different represent-
ations, even though there are some reflective methods to deal with arrays of arbitrary type
in java.lang.reflect.Array. Second, there’s no way to create an array of a generic type;
only monomorphic array creations are allowed. Third, arrays only support operations for
indexing, updating, and getting their length.

Contrast this with what we would like to have in Scala: Arrays should slot into the
collections hierarchy, supporting the roughly one hundred methods that are defined on se-
quences. And they should certainly be generic, so that one can create an Array[T] where T
is a type variable.

The previous collection design dealt with arrays in an ad-hoc way. The Scala compiler
wrapped and unwrapped arrays when required in a process called boxing and unboxing,
similarly to what is done to treat primitive numeric types as objects. Additional “magic”
made generic array creation work. An expression like new Array[T] where T is a type



ODERSKY, MOORS FSTTCS 2009 447

parameter was converted to new BoxedAnyArray[T]. BoxedAnyArray was a special wrap-
per class which changed its representation depending on the type of the concrete Java array to
which it was cast. This scheme worked well enough for most programs but the implement-
ation “leaked” for certain combinations of type tests and type casts, as well as for observing
uninitialised arrays. It also could lead to unexpectedly low performance. Some of the prob-
lems have been described by David MacIver [11] and Matt Malone [12]. Moreover, boxed
arrays were unsound when combined with covariant collections. In summary, the old ar-
ray implementation technique was problematic because it was a leaky abstraction that was
complicated enough so that it would be very tedious to specify where the leaks were to be
expected.

The obvious way to reduce the amount of “magic” needed for arrays is to have two
representations: one that corresponds closely to a Java array and another that forms an in-
tegral part of Scala’s collection hierarchy. Implicit conversions can be used to transparently
convert between the two representations. A possible downside of having two array types
would be that it forces programmers to choose the kind of array to work with. That choice
would not be clear-cut: the Java-like arrays would be fast and interoperable whereas the
Scala native arrays would support a much nicer set of operations on them. With a choice
like this, one would expect different components and libraries to make different decisions,
which would result in incompatibilities and brittle, complex code. In a word, an ideal en-
vironment for future bit rot.

Fortunately, the introduction of implementation traits in 2.8 collections offers a way out
of that dilemma of choice. Arrays can be integrated into this framework using two implicit
conversions. The first conversion maps an Array[T] to an object of type ArrayOps, which
is a subtype of type IndexedSeqLike[T, Array[T]]. Using this conversion, all sequence
operations are available for arrays at the natural types. In particular, methods will always
yield arrays instead of ArrayOps values as their results. Because the results of these implicit
conversions are so short-lived, modern VM’s can eliminate them altogether using escape
analysis, so we expect the calling overhead for these added methods to be essentially zero.

So far so good. But what if we need to convert an array to a real Seq, not just call a
Seq method on it? This is handled by another implicit conversion, which takes an array
and converts it into a WrappedArray. WrappedArrays are mutable, indexed sequences that
implement all sequence operations in terms of a given Java array. The difference between
a WrappedArray and an ArrayOps object is apparent in the type of methods like reverse:
Invoked on a WrappedArray, reverse again returns a WrappedArray, but invoked on an
ArrayOps object, it returns an Array. The conversion from Array to WrappedArray is in-
vertible. A dual implicit conversion goes from WrappedArray to Array. WrappedArray and
ArrayOps both inherit from an implementation trait ArrayLike. This is to avoid duplica-
tion of code between ArrayOps and WrappedArray; all operations are factored out into the
common ArrayLike trait.

Avoiding ambiguities. The two implicit conversions from Array to ArrayLike values are
disambiguated according to the rules explained in Section 7. Applied to arrays, this means
that we can prioritise the conversion from Array to ArrayOps over the conversion from
Array to WrappedArray by placing the former in the standard Predef object (which is vis-



448 EXPERIENCE REPORT: SCALA COLLECTIONS

ible in all user code) and by placing the latter in a class LowPriorityImplicits, which is
inherited by Predef. This way, calling a sequence method will always invoke the conver-
sion to ArrayOps. The conversion to WrappedArray will only be invoked when an array
needs to be converted to a sequence.

Integrating Strings. Strings pose similar problems as arrays in that we are forced to pick
an existing representation which is not integrated into the collection library and which can-
not be extended with new methods because Java’s String class is final. The solution for
strings is very similar as the one for arrays. There are two prioritised implicit conversions
that apply to strings. The low-priority conversion maps a string to an immutable indexed
sequence of type scala.collection.immutable.IndexedSeq. The high-priority conver-
sion maps a string to a (short-lived) StringOps object which implements all operations of
an immutable indexed sequence, but with String as the result type. The previous collec-
tion framework implemented only the first conversion. This had the following undesirable
effect:

"abc" != "abc".reverse.reverse

This unintuitive behaviour occurred because the result of the double reverse in previous
Scala collections was a Seq instead of a String, so Java’s built-in operation of equality an
strings failed to recognise it as equal to the string. In the new collection framework, the high-
priority conversion to StringOps will be applied instead, so that "abc".reverse.reverse
yields a String and the equality holds.

Generic Array Creation and Manifests. The only remaining question is how to imple-
ment generic array creation. Unlike Java, Scala allows an instance creation new Array[T]

where T is a type parameter. How can this be implemented, given the fact that there does
not exist a uniform array representation in Java? The only way to do this is to require ad-
ditional run-time information which describes the type T. Scala 2.8 has a new mechanism
for this, which is called a Manifest. An object of type Manifest[T] provides complete
information about the type T. Manifest values are typically passed in implicit parameters,
and the compiler knows how to construct them for statically known types T. There exists
also a weaker form named ClassManifest which can be constructed from knowing just the
top-level class of a type, without necessarily knowing all its argument types. It is this type
of runtime information that’s required for array creation.

10 Conclusion
As this paper is written we are about to release Scala 2.8 with its new collections library. So
it is too early to tell whether the new design withstands bit rot better than the old one did.
Nevertheless, we have reasonable grounds for hoping that this will be the case.

The new collection design is far more regular than the old one and makes many as-
pects of its structure more explicit. Mutability aspects are consistently expressed by placing
collections in the right package. Reusable method implementations are separated from cli-
ent interfaces in implementation classes. This allowed us to have simple and intuitive types



ODERSKY, MOORS FSTTCS 2009 449

like Seq[String] or Map[String, Int] for clients yet have implementation classes expose
their representation as in additional type parameter that can be instantiated as needed by
implementers. There is a common universal framework of builders and traversal methods.
Code duplication is almost completely absent (There is still a certain amount of duplicated
boilerplate code in the definition of so called views, which are by-name transforms of ex-
isting collections, but these views are typically not extended by third parties). Arrays and
strings are cleanly integrated into the collections framework with implicit conversions in-
stead of requiring special compiler support.

Getting this design right was very hard, however. It took us about a year to go from
a first sketch to the final implementation. In doing this work, we also encountered some
dead ends. Initially, we anticipated that most of the flexibility and opportunities for code-
reuse of the framework would come from higher-kinded types. In retrospect this turned
out to be a false assumption, because requirements on the element type of collections varied
from collection to collection. So common methods on collections had to be defined piece-
wise. They would return a specialised collection for some element types, and a more general
“fall-back” collection for other element types. In the course of the project, we learned how
to use implicits to define these piece-wise functions. More generally, we came to appreciate
how implicits can encode rich user-defined type theories. So, in the end higher-kinded types
played a smaller role than anticipated and implicits played a much larger role.

Nevertheless, type constructor polymorphism did find a useful application niche in
the collections framework, where it came to generate factories for collection classes. This
application worked out fine because setting up a factory by inheriting from a factory class
which takes higher-kinded type parameters is done on a case-by-case basis. Collections
which pose additional constraints on the higher-kinded type parameter can simply choose
not to inherit from TraversableFactory and implement the required methods themselves.
By contrast, implementation classes follow a subtyping hierarchy; any specification made
higher up in the hierarchy needs to hold up for all inheriting classes. So the lesson drawn
is not that higher-kinded types per se are of limited utility, but that they sometimes interact
in awkward ways with a rich subtyping hierarchy. In some sense this is a new facet of the
fragile baseclass problem.

Acknowledgments The final architecture and implementation of collections was mainly
done by Odersky but several people have shaped the design in important ways. The new
libraries would not exist without their contributions. Matthias Zenger wrote Scala’s original
collection libraries for sets, maps, buffers, and other types. Many of his design decisions
have survived the redesign. Some have been generalised, such as his partition into mutable
and immutable collection packages, which now applies uniformly for all kinds of collections
including sequences. Sean McDirmid added projections to the original collection libraries, a
concept which has been taken up in the redesign under the name of views. Adriaan Moors
developed higher-kinded types in Scala, which gave the primary motivation for the collec-
tion redesign, even though in the end their role is more narrow than originally anticipated.
Adriaan was also the first to explore builders as a fundamental abstraction for Scala’s col-
lections. David McIver proposed builders as implicit parameters and Traversable as a
generalisation of Iterable. Miles Sabin contributed the bidirectional wrappers that con-



450 EXPERIENCE REPORT: SCALA COLLECTIONS

vert between Java collections and Scala collections. Phil Bagwell, Gilles Dubochet, Burak
Emir, Erik Engbrecht, Stepan Koltsov, Stéphane Micheloud, Tony Morris, Jorge Ortiz, Paul
Phillips, David Pollak, Tiark Rompf, Lex Spoon, and many others have contributed to spe-
cific collection classes or made important suggestions for improvements.

Bibliography

[1] Andrew P. Black, Nathanael Schärli, and Stéphane Ducasse. Applying traits to the
Smalltalk collection classes. In Ron Crocker and Guy L. Steele Jr., editors, OOPSLA,
pages 47–64. ACM, 2003.

[2] Kim B. Bruce, Albert R. Meyer, and John C. Mitchell. The semantics of second-order
lambda calculus. Inf. Comput., 85(1):76–134, 1990.

[3] William R. Cook. Interfaces and specifications for the Smalltalk-80 collection classes.
In OOPSLA, pages 1–15, 1992.

[4] Vincent Cremet and Philippe Altherr. Adding type constructor parameterization to
Java. Journal of Object Technology, 7(5):25–65, June 2008. Special Issue: Workshop on
FTfJP, ECOOP 07. http://www.jot.fm/issues/issue 2008 06/article2/.

[5] Derek Dreyer, Robert Harper, Manuel M. T. Chakravarty, and Gabriele Keller. Modular
type classes. In Martin Hofmann and Matthias Felleisen, editors, POPL, pages 63–70.
ACM, 2007.

[6] J.Y. Girard. Interpretation fonctionelle et elimination des coupures de l’arithmetique
d’ordre superieur. These d’Etat, Paris VII, 1972.

[7] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, 1983.

[8] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn,
Joseph H. Fasel, Marı́a M. Guzmán, Kevin Hammond, John Hughes, Thomas Johns-
son, Richard B. Kieburtz, Rishiyur S. Nikhil, Will Partain, and John Peterson. Report
on the programming language Haskell, a non-strict, purely functional language. SIG-
PLAN Notices, 27(5):R1–R164, 1992.

[9] Mark P. Jones. A system of constructor classes: Overloading and implicit higher-order
polymorphism. J. Funct. Program., 5(1):1–35, 1995.

[10] Barbara Liskov. Keynote address - data abstraction and hierarchy. In OOPSLA ’87:
Addendum to the proceedings on Object-oriented programming systems, languages and applic-
ations (Addendum), pages 17–34, New York, NY, USA, 1987. ACM.

[11] David MacIver. Scala arrays, 2008. Blog post at http://www.drmaciver.com/
2008/06/scala-arrays.

[12] Matt Malone. The mystery of the parameterized array, 2009.
Blog post at http://oldfashionedsoftware.com/2009/08/05/
the-mystery-of-the-parameterized-array.

[13] Adriaan Moors, Frank Piessens, and Martin Odersky. Generics of a higher kind. In
Gail E. Harris, editor, OOPSLA, pages 423–438. ACM, 2008.

[14] Maurice Naftalin and Philip Wadler. Java Generics and Collections. O’Reilly Media, Inc.,
2006.

http://www.drmaciver.com/2008/06/scala-arrays
http://www.drmaciver.com/2008/06/scala-arrays
http://oldfashionedsoftware.com/2009/08/05/the-mystery-of-the-parameterized-array
http://oldfashionedsoftware.com/2009/08/05/the-mystery-of-the-parameterized-array


ODERSKY, MOORS FSTTCS 2009 451

[15] Martin Odersky. Pimp my library, 2006. Blog post at http://www.artima.com/
weblogs/viewpost.jsp?thread=179766.

[16] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles Dubochet,
Burak Emir, Sean McDirmid, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz,
Lex Spoon, Erik Stenman, and Matthias Zenger. An Overview of the Scala Program-
ming Language (2. edition). Technical report, 2006.

[17] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima, 2008.
[18] John C. Reynolds. Towards a theory of type structure. In Bernard Robinet, editor,

Symposium on Programming, volume 19 of Lecture Notes in Computer Science, pages 408–
423. Springer, 1974.

[19] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black. Traits:
Composable units of behaviour. In ECOOP, pages 248–274, 2003.

[20] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In
POPL, pages 60–76, 1989.

[21] Stefan Wehr, Ralf Lämmel, and Peter Thiemann. JavaGI : Generalized interfaces for
Java. In Erik Ernst, editor, ECOOP, volume 4609 of Lecture Notes in Computer Science,
pages 347–372. Springer, 2007.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

http://www.artima.com/weblogs/viewpost.jsp?thread=179766
http://www.artima.com/weblogs/viewpost.jsp?thread=179766

	Introduction
	Syntactic Preliminaries
	Status Quo
	Abstracting over the Representation Type
	Abstracting over the Collection Type Constructor
	Ad-hoc Polymorphism with Implicits
	Implicits for Scala's collections
	Scala 2.8 Collections Hierarchy
	Dealing with Arrays and Strings
	Conclusion



