e
A few additional AST lowerings that can simplify the development of new backends

A few additional AST lowerings that can simplify
the development of new backends

Miguel Garcia
http://lamp.epfl.ch/~magarcia

LAMP, EPFL

2011-02-22

u]
o)
I
ul
iht
1
€

Hac

http://lamp.epfl.ch/~magarcia

A few additional AST lowerings that can simplify the development of new backends

Outline

Elevator pitch

Status Quo

Hidden opportunities for reuse (lots of)

Fine print: SSA, Testing, and genuine platform dependencies

Revisiting the Elevator Pitch

u]
o)

I

ul
iht
1
)
50
N}

A few additional AST lowerings that can simplify the development of new backends

L Elevator pitch

» There is a way to reduce the effort it takes to develop
a new backend for Scala

» How? By factoring out those AST lowerings
that are shared across different backends
(otherwise, each backend developer must handle them anew)

» Moreover, developers of non-backend compiler plugins
also stand to benefit from this approach.

A few additional AST lowerings that can simplify the development of new backends

- Status Quo

A brief history (so far) of non-VM backends:

> CSharpGen1
» Goal: emitting C# 3.0 source files,
acting as a drop-in replacement of GenICode — GenMSIL
> Input: BlockExpr-free, OO code (“structured GOTO” allowed.)
» Status: Assigned to community

» Geoffrey Reedy’s Scala to LLVM?
» Goal: emitting LLVM IR
» Input: SSA (procedural 3-Address instr with phi-nodes in CFGs)
» Status: Under development

» The mythical Scala to Java translator

» Goal: emitting Java 1.5 source files
Input: GOTO-less, BlockExpr-free, OO code.
Status: Abandoned

v

v

1 http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q1/CSharpGen.pdf
http://greedy.github.com/scala/ a0

http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q1/CSharpGen.pdf
http://greedy.github.com/scala/

A few additional AST lowerings that can simplify the development of new backends

L Hidden opportunities for reuse (lots of)

What-if the following post-CleanUp transformations were available:

1. GOTO elimination® (implemented 50%)
rephrases ASTs containing arbitrary jumps into ASTs containing

» structured control flow constructs, plus
» additional boolean variables to pick the original execution paths.

2. BlockExpr desugaring:
flatten block expressions, assign value to variable and use later.

3. Explicit eval order:
again by assigning to temporary variables. Useful to rule out
wrong-order in “source-language backends". For example:
() +y() * zO"vsx() + (y() * z())”

Taken together, they bring the AST into GOTO-less 3-Address form.

3http://lamp.epfl.ch/~magarc1a/Sca1aCompllerCornerReloaded/ZOllQl/JumpsRemover.pdf

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/JumpsRemover.pdf

A few additional AST lowerings that can simplify the development of new backends

L Fine print: SSA, Testing, and genuine platform dependencies

What about SSA (details on backup slide)

» Tree nodes can't represent SSA explicitly, so we stop rewriting.
In any case, SSA from 3-Address not harder than from bytecode:
SSA-functional connection “at hand” after previous rewritings.

A straightforward way to check whether lowerings preserve semantics
> let GenICode — GenJVM run as usual afterwards

Granted, some unavoidable (genuine) platform adapting still needed
(a barrier that platform gurus can tackle with far less compiler mojo)

(G AbsType in Types i v global

= (G Type in Types (- (f) dassPath: ClassPath[T]
=t (GuLazyType in Types (- (£ rootLoader: LazyType
= :>r-.)) platformPhases: List[SubComponent]
- (i Packagel oader in SymbolLoaders () | externalEquals: Symbel
(i JavaPackageLoader in SymbolLoaders (7 = .
- (I Namespacel oader in SymbolLoaders (/ - (1) sMaybeBoxed(Symbol): Ay
----- (g ClassfileL oader in Symboloaders ()
- (i MSILTypeLoader in SymbolLoaders ¢

----- -g-Snudrc‘E*gfmiderdinSVSBD:;DEdE: o Platform assumptions (SLS Ch. 12)
- 0) moduieClassLoader in SymbolLoaders (
TODO: Porting Guide of scalac

A few additional AST lowerings that can simplify the development of new backends

L Revisiting the Elevator Pitch

A small number of (post-CleanUp) AST lowerings:

1.
2.
3.

GOTO elimination
BlockExpr flattening
making eval order explicit

pave the way to a large number of new backends:

>

>

>

>

>

>

C# 3.0, Java 1.5, “low-level JavaScript” (ditto for ActionScript)
program verification backends (in particular, Spec#)

LLVM, Google Native Web Client

Android NDK (Native Development Kit), Apple iOS

other “embedded” VMs (tablets, etc.)

GOOg|e @ Game DeVCOn google.com/events/gdc/2011/agenda.html

and that’s without counting the SSA-functional connection! : -)

google.com/events/gdc/2011/agenda.html

A few additional AST lowerings that can simplify the development of new backends

LAppendix: Biblio on SSA

Appendix (1 of 2): Bibliograpy for slide 6 (SSA)

» A. Gal, Ch. W. Probst, and M. Franz
Structural Encoding of Static Single Assignment Form®
Navindra Umanee: SOOT Shimple: An Investigation of SSA®

» W. Amme, N. Dalton, J. von Ronne, and M. Franz
SafeTSA: A Type Safe and Referentially Secure Mobile-Code
Representation Based on Static Single Assignment Form

v

» Section on “functional" in this® SSA bibliography
Marius Nita’s A Functional Intermediate Form for Soot’

v

4http://dx.doi.org/lO.lOlG/j.entcs.2005.02.045
http://www.sable.mcgill.ca/publications/thesis/masters—-navindra/
sable-thesis-2006-masters-navindra-double-sided.pdf

6

http://www.cs.man.ac.uk/~jsinger/ssa.html

http://web.cecs.pdx.edu/~marius/files/hw/grad_compilers/mesults.pdf

http://dx.doi.org/10.1016/j.entcs.2005.02.045
http://www.sable.mcgill.ca/publications/thesis/masters-navindra/sable-thesis-2006-masters-navindra-double-sided.pdf
http://www.sable.mcgill.ca/publications/thesis/masters-navindra/sable-thesis-2006-masters-navindra-double-sided.pdf
http://www.cs.man.ac.uk/~jsinger/ssa.html
http://web.cecs.pdx.edu/~marius/files/hw/grad_compilers/results.pdf

A few additional AST lowerings that can simplify the development of new backends

LAppendix: Biblio on CLR native compilers

Appendix (2 of 2): Bibliography for slide 7 (native compilers)

» Unlike for Android, native development only with partner-license:

» Windows Phone 7
» Silverlight
» XNA (Xbox 360). Note: the Xbox “1.0” had a C++ XDK&.

» What defines those platforms instead is the base framework,
e.g. for XNA it's a subset of the .NET Compact Framework.

» Assemblies relying on a platform’s base framework can run on it:
» F# for Game Development®
» Using XNA Game Studio with other programming languages'°
» NGEN can compile those assemblies into (platform-specific)
executable images'', but JITting is on par except for startup time.

8http://en.wikipedia.orq/wiki/Xbox_Development_Kit

http://sharp-gamedev.blogspot.com/
1Ohttp://forums‘create.msdn.com/forums/p/l464/7267‘aspx

http://en.wikipedia.org/wiki/Native_Image_Generator

http://en.wikipedia.org/wiki/Xbox_Development_Kit
http://sharp-gamedev.blogspot.com/
http://forums.create.msdn.com/forums/p/1464/7267.aspx
http://en.wikipedia.org/wiki/Native_Image_Generator

	Elevator pitch
	Status Quo
	Hidden opportunities for reuse (lots of)
	Fine print: SSA, Testing, and genuine platform dependencies
	Revisiting the Elevator Pitch
	Appendix
	Appendix: Biblio on SSA
	Appendix: Biblio on CLR native compilers

