
A few additional AST lowerings that can simplify the development of new backends

A few additional AST lowerings that can simplify
the development of new backends

Miguel Garcia
http://lamp.epfl.ch/~magarcia

LAMP, EPFL

2011-02-22

1 / 7

http://lamp.epfl.ch/~magarcia


A few additional AST lowerings that can simplify the development of new backends

Outline

Elevator pitch

Status Quo

Hidden opportunities for reuse (lots of)

Fine print: SSA, Testing, and genuine platform dependencies

Revisiting the Elevator Pitch

2 / 7



A few additional AST lowerings that can simplify the development of new backends

Elevator pitch

I There is a way to reduce the effort it takes to develop
a new backend for Scala

I How? By factoring out those AST lowerings
that are shared across different backends
(otherwise, each backend developer must handle them anew)

I Moreover, developers of non-backend compiler plugins
also stand to benefit from this approach.

3 / 7



A few additional AST lowerings that can simplify the development of new backends

Status Quo

A brief history (so far) of non-VM backends:

I CSharpGen1

I Goal: emitting C# 3.0 source files,
acting as a drop-in replacement of GenICode→ GenMSIL

I Input: BlockExpr-free, OO code (“structured GOTO” allowed.)
I Status: Assigned to community

I Geoffrey Reedy’s Scala to LLVM2

I Goal: emitting LLVM IR
I Input: SSA (procedural 3-Address instr with phi-nodes in CFGs)
I Status: Under development

I The mythical Scala to Java translator
I Goal: emitting Java 1.5 source files
I Input: GOTO-less, BlockExpr-free, OO code.
I Status: Abandoned

1
http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q1/CSharpGen.pdf

2
http://greedy.github.com/scala/

4 / 7

http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q1/CSharpGen.pdf
http://greedy.github.com/scala/


A few additional AST lowerings that can simplify the development of new backends

Hidden opportunities for reuse (lots of)

What-if the following post-CleanUp transformations were available:

1. GOTO elimination3 (implemented 50%)
rephrases ASTs containing arbitrary jumps into ASTs containing

I structured control flow constructs, plus
I additional boolean variables to pick the original execution paths.

2. BlockExpr desugaring:
flatten block expressions, assign value to variable and use later.

3. Explicit eval order:
again by assigning to temporary variables. Useful to rule out
wrong-order in “source-language backends". For example:
“x() + y() * z()” vs. “x() + (y() * z())”

Taken together, they bring the AST into GOTO-less 3-Address form.

3
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/JumpsRemover.pdf

5 / 7

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/JumpsRemover.pdf


A few additional AST lowerings that can simplify the development of new backends

Fine print: SSA, Testing, and genuine platform dependencies

What about SSA (details on backup slide)
I Tree nodes can’t represent SSA explicitly, so we stop rewriting.

In any case, SSA from 3-Address not harder than from bytecode:
SSA-functional connection “at hand” after previous rewritings.

A straightforward way to check whether lowerings preserve semantics
I let GenICode→ GenJVM run as usual afterwards

Granted, some unavoidable (genuine) platform adapting still needed
(a barrier that platform gurus can tackle with far less compiler mojo)

Platform assumptions (SLS Ch. 12)
TODO: Porting Guide of scalac

6 / 7



A few additional AST lowerings that can simplify the development of new backends

Revisiting the Elevator Pitch

A small number of (post-CleanUp) AST lowerings:

1. GOTO elimination

2. BlockExpr flattening

3. making eval order explicit

pave the way to a large number of new backends:

I C# 3.0, Java 1.5, “low-level JavaScript” (ditto for ActionScript)

I program verification backends (in particular, Spec#)

I LLVM, Google Native Web Client

I Android NDK (Native Development Kit), Apple iOS

I other “embedded” VMs (tablets, etc.)

I Google @ Game DevCon: google.com/events/gdc/2011/agenda.html

and that’s without counting the SSA-functional connection! :-)

7 / 7

google.com/events/gdc/2011/agenda.html


A few additional AST lowerings that can simplify the development of new backends

Appendix: Biblio on SSA

Appendix (1 of 2): Bibliograpy for slide 6 (SSA)

I A. Gal, Ch. W. Probst, and M. Franz
Structural Encoding of Static Single Assignment Form4

I Navindra Umanee: SOOT Shimple: An Investigation of SSA5

I W. Amme, N. Dalton, J. von Ronne, and M. Franz
SafeTSA: A Type Safe and Referentially Secure Mobile-Code
Representation Based on Static Single Assignment Form

I Section on “functional" in this6 SSA bibliography

I Marius Nita’s A Functional Intermediate Form for Soot7

4
http://dx.doi.org/10.1016/j.entcs.2005.02.045

5
http://www.sable.mcgill.ca/publications/thesis/masters-navindra/

sable-thesis-2006-masters-navindra-double-sided.pdf
6
http://www.cs.man.ac.uk/~jsinger/ssa.html

7
http://web.cecs.pdx.edu/~marius/files/hw/grad_compilers/results.pdf

8 / 7

http://dx.doi.org/10.1016/j.entcs.2005.02.045
http://www.sable.mcgill.ca/publications/thesis/masters-navindra/sable-thesis-2006-masters-navindra-double-sided.pdf
http://www.sable.mcgill.ca/publications/thesis/masters-navindra/sable-thesis-2006-masters-navindra-double-sided.pdf
http://www.cs.man.ac.uk/~jsinger/ssa.html
http://web.cecs.pdx.edu/~marius/files/hw/grad_compilers/results.pdf


A few additional AST lowerings that can simplify the development of new backends

Appendix: Biblio on CLR native compilers

Appendix (2 of 2): Bibliography for slide 7 (native compilers)

I Unlike for Android, native development only with partner-license:
I Windows Phone 7
I Silverlight
I XNA (Xbox 360). Note: the Xbox “1.0” had a C++ XDK8.

I What defines those platforms instead is the base framework,
e.g. for XNA it’s a subset of the .NET Compact Framework.

I Assemblies relying on a platform’s base framework can run on it:
I F# for Game Development9

I Using XNA Game Studio with other programming languages10

I NGEN can compile those assemblies into (platform-specific)
executable images11, but JITting is on par except for startup time.

8
http://en.wikipedia.org/wiki/Xbox_Development_Kit

9
http://sharp-gamedev.blogspot.com/

10
http://forums.create.msdn.com/forums/p/1464/7267.aspx

11
http://en.wikipedia.org/wiki/Native_Image_Generator

9 / 7

http://en.wikipedia.org/wiki/Xbox_Development_Kit
http://sharp-gamedev.blogspot.com/
http://forums.create.msdn.com/forums/p/1464/7267.aspx
http://en.wikipedia.org/wiki/Native_Image_Generator

	Elevator pitch
	Status Quo
	Hidden opportunities for reuse (lots of)
	Fine print: SSA, Testing, and genuine platform dependencies
	Revisiting the Elevator Pitch
	Appendix
	Appendix: Biblio on SSA
	Appendix: Biblio on CLR native compilers


