
jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

jdk2ikvm and next steps for Scala.NET
(bonus: a preview of scala.tools.unparse)

Miguel Garcia
http://lamp.epfl.ch/~magarcia/ScalaNET/

LAMP, EPFL

2011-01-18

1 / 14

http://lamp.epfl.ch/~magarcia/ScalaNET/

jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

Outline

Recap of last presentation

Motivation for a standalone source-level JDK to IKVM migration tool

jdk2ikvm: what it does and how it works

Preview of scala.tools.unparse

Next steps for Scala.NET

2 / 14

jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

Recap of last presentation

Last time we reviewed some goals for Scala.NET:

I interoperate with assemblies emitted by other compilers

I deal with CLR specifics (e.g., unsigned integrals, structs and
address-of, overflow-checking arithmetic)

I support compiler plugins, LINQ, play nice with .NET tooling, IDEs.

We also looked at IKVM and the way it automates platform migration:

I interplay of the IKVM library (.dll with JDK-like API); and
the ikvmc compiler, which performs a fair amount of rewriting
on the way from jar to exe,

I rewritings that we dub the JDK to IKVM conversion recipe1

1http://lamp.epfl.ch/~magarcia/
ScalaCompilerCornerReloaded/2010Q4/jdk2ikvmPartA.pdf

3 / 14

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/jdk2ikvmPartA.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/jdk2ikvmPartA.pdf

jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

Motivation for a standalone source-level JDK to IKVM migration tool

There’s nothing wrong with the screenshot below (“patched compiler ”).

I After all, it does not show the architectural drift that had accrued
with respect to forJVM mode.

I We started shoehorning the JDK-to-IKVM conversion into
the compiler well before having a clear picture about its full extent
(hint: the pseudocode summary of the conversion takes 8 pages).

I Please note: It’s easy to be wise after the fact.

JDK-to-IKVM not only can
be formulated at the level
of Scala sources: doing so
adds value beyond “just”
avoiding arhitectural drift.

4 / 14

jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

jdk2ikvm: what it does and how it works

The way jdk2ikvm does it (sample conversion:
instance-method receiver turned into first arg of class-static invocation)

Range positions (-Yrangepos) can nest, so must patches2

x5 = "abc" substring (0 , 3)
app |-------------------------|[341:367]
fun |--------------| [341:356]
quali |----| [341:346]
arg0 || [358:359]
arg1 || [365:366]

2http://lamp.epfl.ch/~magarcia/
ScalaCompilerCornerReloaded/2011Q1/ValidatePositions.pdf

5 / 14

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/ValidatePositions.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/ValidatePositions.pdf

jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

jdk2ikvm: what it does and how it works

Another conversion step:
adding co-overrides for
String and Object.

Below, in jdk2ikvm:

Compare with the thrill
(yes, right) of adding
trees and symbols in the
patched compiler.

6 / 14

jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

jdk2ikvm: what it does and how it works

I Target audience for jdk2ikvm: Developers with a JDK-based
Scala codebase who want to migrate to .NET

I either as a one-time migration
Please note: impossible with the patched-compiler approach
(i.e., only the Scala.NET codebase is maintained afterwards); or

I supporting both platforms in parallel.

I Ideas for the future:
I the migration path

(Java on JDK)→ (Scala on IKVM + (.NET or Mono))
now requires (“only”) a more complete Java-to-Scala translator
(existing prototypes: scalify3, jatran4, java2scala5)

I “same-platform” API migration tools
I from java.io to revamped scala.io
I from Java to Scala Collections, etc.

so as to progressively break ties, moving towards a Scala platform
3http://github.com/paulp-etc/scalify
4http://code.google.com/p/jatran/
5http://java2scala.svn.sourceforge.net/

7 / 14

http://github.com/paulp-etc/scalify
http://code.google.com/p/jatran/
http://java2scala.svn.sourceforge.net/

jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

jdk2ikvm: what it does and how it works

Bootstrapping, using jdk2ikvm:

1. output Scala.NET sources from unmodified JDK-based trunk

2. cross-compile them to obtain scalacompiler.exe

3. use scalacompiler.exe (not the cross-compiler)
to compile the output of jdk2ikvm

converted

scalalib

sources

IKVM

converted

compiler

sources

scalalib

sources

JDK

compiler

sources

jdk2ikvm

The fine print: how it’s going.

8 / 14

jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

Preview of scala.tools.unparse

And now for something different:

Have you heard about “unparsing”?

Unparsing is like pretty-printing, except that
I as-seen-from type information is made explicit in the output

(inspired by Scaladoc),
I desugarings introduced by parser, namer, and typer

are also made explicit.

Additionally,
I unparsed code compiles and behaves the same as the program it

was obtained from.

However, it’s not required for the unparsed program:
I to be binary compatible with code compiled against the original

program, nor
I to resemble the original layout.

9 / 14

jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

Preview of scala.tools.unparse

Example:

/∗− original ∗/
def listItemsToHtml(items: Seq[Block]) =

items. foldLeft (xml.NodeSeq.Empty){ (xmlList, item) =>
item match {

case OrderedList(_, _) | UnorderedList(_) => // html requires sub ULs to be put into the last LI
xmlList . init ++ { xmlList . last . child ++ blockToHtml(item) }</ li >

}
}

/∗− unparsed ∗/
def listItemsToHtml(items : scala. collection .Seq[scala.tools.nsc.doc.model.comment.Block]) =

items. foldLeft [scala.xml.NodeSeq](scala.xml.NodeSeq.Empty)(
((xmlList : scala.xml.NodeSeq,

item : scala. tools .nsc.doc.model.comment.Block) => (item match {
case (scala.tools .nsc.doc.model.comment.OrderedList(_, _) | scala.tools.nsc.doc.model.comment.UnorderedList(_)) =>

xmlList . init .++[scala.xml.Node, scala.xml.NodeSeq](new scala.xml.Elem((null), ("li"), scala.xml.Null , scala.$scope,
({ $buf = new scala.xml.NodeBuffer()

buf.&+(xmlList. last . child .++[scala.xml.Node, Any](M.blockToHtml(item))(collection.Seq.canBuildFrom[scala.xml.Node]))
$buf }: _∗)))(xml.NodeSeq.canBuildFrom) })))

10 / 14

jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

Preview of scala.tools.unparse

Why would someone want to read unparsed code?

I for one, to visualize what a given phase does (I’ve always
wanted to know what specialize does to my program :-)

I Admittedly, benefit inverse with expertise. Put more bluntly,

The fact that unparsing is not useful for experts
does not mean

it’s not useful for many other developers.

I yes, forward jumps have to be defunctionalized using an explicit
state machine6.

However, the main benefit of unparsing may come from another angle:
improving the economics7 of compiler-plugin development.

6http://www.scala-lang.org/node/7423
7http://lamp.epfl.ch/~magarcia/

ScalaCompilerCornerReloaded/2010Q4/Unparsing.pdf
11 / 14

http://www.scala-lang.org/node/7423
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/Unparsing.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/Unparsing.pdf

jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

Preview of scala.tools.unparse

An “unparsing AST-aware pre-processor ”8 is a compiler plugin with a
Transformer that trades some subtrees for non-typed parse trees.

Compared to “traditional” compiler plugins:

I Cons: longer wall-clock time (two compiler runs).
I Pros:

I take a break from the thrill of adding term and type symbols; and
I not constrained to the Scala subset that later phases understand

(e.g., ASTs after explicitouter should do without Matches).

Claim: the above amounts to an orders-of-magnitude
speedup for first-time compiler-plugin developers.

Target niche: pre-processors as proofs-of-concept. In case demand
justifies development, evolution path exists to full-fledged plugins
(with expected code reuse of over 50%).

8For an example see http://lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/

jdk2ikvm/src/scala/tools/jdk2ikvm/UnparsingJDK2IKVM.scala
12 / 14

http://lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/jdk2ikvm/src/scala/tools/jdk2ikvm/UnparsingJDK2IKVM.scala
http://lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/jdk2ikvm/src/scala/tools/jdk2ikvm/UnparsingJDK2IKVM.scala

jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

Preview of scala.tools.unparse

Warning: entering brainstorm zone . . .

Candidate pre-processors that come to mind:

I desugar into sentences of a virtualized language

I Atomicity via Source-to-Source Translation (Hindman, Grossman)
http://www.eecs.berkeley.edu/~benh/atomjava.pdf

Verification-related deserves its own section:

I Temporal JML: runtime checks given temporal properties as DSL
(Hussain, Leavens) www.eecs.ucf.edu/~fhussain/papers/temporaljmlc.pdf

I Typestates, anyone?

This is not to say that pre-processors are superior to libraries. See:

I Contracts for Scala (Odersky) dx.doi.org/10.1007/978-3-642-16612-9_5

I .NET Code Contracts research.microsoft.com/en-us/projects/contracts/

. . . leaving brainstorm zone.

13 / 14

http://www.eecs.berkeley.edu/~benh/atomjava.pdf
www.eecs.ucf.edu/~fhussain/papers/temporaljmlc.pdf
dx.doi.org/10.1007/978-3-642-16612-9_5
research.microsoft.com/en-us/projects/contracts/

jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

Next steps for Scala.NET

Next steps
1. Hardening the compiler (stackmaps, overflow checking, unsigned

integrals, “attempt to enter a try-block with non-empty stack”, etc.)
2. automated tests after running:

trunk→ jdk2ikvm→ cross-compiler→ scalacompiler.exe

3. “Generics in the backend”
4. emit binary assemblies as per Common Compiler Infrastructure9

5. Visual Studio Language Service

Coming soon to . . .
http://lamp.epfl.ch/

~magarcia/ScalaNET/

9
http://ccimetadata.codeplex.com/

14 / 14

http://lamp.epfl.ch/~magarcia/ScalaNET/
http://lamp.epfl.ch/~magarcia/ScalaNET/
http://ccimetadata.codeplex.com/

jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

Backup slides

Summary of the JDK-to-IKVM conversion (1 of 2):
1. Transforms for the String and Object contracts

1.1 instance helpers, new helpers, co-overrides for non-sealed
methods, add missing j.l.Object overrides

1.2 clone() on arrays, Finalize() body-with-check.

2. Magic for interfaces
2.1 Extra interfaces
2.2 Implied interfaces
2.3 Upcast to extra interface (string comparison semantics, rewrite

standalone type refs)

3. Ghost interfaces
3.1 Standalone type refs to Cloneable and CharSequence
3.2 instance method invocations, == and !=
3.3 Type casts and checks

15 / 14

jdk2ikvm and next steps for Scala.NET (bonus: a preview of scala.tools.unparse)

Backup slides

Summary of the JDK-to-IKVM conversion (2 of 2):

4. Erase type arguments to all IKVM classes

5. Ignore @throws

6. IKVM’s Class.getMethod and Method.invoke require
explicit empty array for repeated param. (Similarly for other
repeated params in JDK signatures)

7. Exceptions
7.1 Case (1) catch Throwable
7.2 Case (2) catch Exception or catch Error
7.3 Case (3) otherwise

16 / 14

	Recap of last presentation
	Motivation for a standalone source-level JDK to IKVM migration tool
	jdk2ikvm: what it does and how it works
	Preview of scala.tools.unparse
	Next steps for Scala.NET
	Appendix
	Backup slides

