
Finding the source code fragment that

corresponds to a given AST-level type-reference

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

January 22th, 2011

Abstract

The jdk2ikvm transformation requires, among others:

• replacing some type-ref occurrences for others (e.g., extends CharSequence

should be replaced with extends java.lang.CharSequence. Interface).

• erasing type args in references to types that in JDK take type
params.

Automatic API migration tools (such as jdk2ikvm) are regarded more
useful if they preserve the layout of the original source code. For the
case at hand, doing so involves tracing type references in ASTs back to
their parse tree counterparts (thanks to range positions), as summarized
in these notes. Although most examples are framed in the context of
jdk2ikvm, the approach discussed here is generally applicable when refac-
toring, migrating, or pre-processing Scala source code.

Contents

1 Background 2

2 Motivation: “Upcastings” needed in jdk2ikvm 2
2.1 Compiler-supported type maps (we want range positions instead) 2

3 Type refs and the parser 3
3.1 AST nodes of interest . 3
3.2 Example: AppliedTypeTree . 5
3.3 Productions building those nodes 5

4 Parse tree counterpart to an AST type ref 5

5 Implementations 7
5.1 Type mappings in jdk2ikvm . 7
5.2 Type erasure in jdk2ikvm . 8
5.3 Deconstructing types . 9

1

http://lamp.epfl.ch/~magarcia

1 Background

Build and run instructions for jdk2ikvm can be found in Sec. 1 of:

• Learning and doing scalac transformations the easy way: via unparsing1

Other related write-ups:

• Bits and pieces of information about the parser, namer, and typer phases
that turn out to be necessary just to be able to unparse Scala ASTs2

• A source-level, automatic API migration that preserves layout (a story of
range positions)3

• Unparsing types the Scaladoc way4

2 Motivation: “Upcastings” needed in jdk2ikvm

The following six concrete value types are to be mapped as shown:

val upcastings = Map(ThrowableClass -> "System.Exception",

jlExceptionClass -> "System.Exception",

jlErrorClass -> "System.Exception",

ComparableClass -> "System.IComparable",

ObjectClass -> "Object",

StringClass -> "String")

In general, visit subnodes of the node kinds covered in Sec. 3.1, to get hold
of their range positions. For example:

class B extends java.util.List[java.lang.String]

// should be translated to:

class B extends java.util.List[String]

This translation requires visiting sub-nodes of an AppliedTypeTree (Sec. 3.2).

2.1 Compiler-supported type maps (we want range posi-
tions instead)

The term “type mapping” is used in the context of the compiler as discussed
for completeness in this subsection. It’s not the technique we’ll employ, because
range positions are not copied over from parse trees to tpe’s.

An description of TypeMap can be found in §4.2 of http://www.scala-lang.
org/sid/5.

A TypeMap has a TypeMapTransformer (Figure 1), which can be applied with
TypeMap.mapOver:

1http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/Unparsing.

pdf
2http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/unpasynth.

pdf
3http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/

ValidatePositions.pdf
4http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/

TypesScaladocWay.pdf

2

http://www.scala-lang.org/sid/5
http://www.scala-lang.org/sid/5
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/Unparsing.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/Unparsing.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/unpasynth.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/unpasynth.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/ValidatePositions.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/ValidatePositions.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/TypesScaladocWay.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/TypesScaladocWay.pdf

/** Map a tree that is part of an annotation argument.

* If the tree cannot be mapped, then invoke giveup().

* The default is to transform the tree with

* TypeMapTransformer.

*/

def mapOver(tree: Tree, giveup: ()=>Nothing): Tree =

(new TypeMapTransformer).transform(tree)

/** This transformer leaves the tree alone except to remap

* its types. */

class TypeMapTransformer extends Transformer {

override def transform(tree: Tree) = {

val tree1 = super.transform(tree)

val tpe1 = TypeMap.this(tree1.tpe)

if ((tree eq tree1) && (tree.tpe eq tpe1))

tree

else

tree1.shallowDuplicate.setType(tpe1)

}

}

Also check,

3 Type refs and the parser

3.1 AST nodes of interest

Looking at Parsers.scala:

/** Singleton type, eliminated by RefCheck */

case class SingletonTypeTree(ref: Tree) extends TypTree

/** Type selection <qualifier> # <name>, eliminated by RefCheck */

case class SelectFromTypeTree(qualifier: Tree, name: TypeName) extends TypTree with RefTree

/** Intersection type <parent1> with ... with <parentN> { <decls> }, eliminated by RefCheck */

case class CompoundTypeTree(templ: Template) extends TypTree

3

Figure 1: Mapping types, Sec. 2.1

4

/** Applied type <tpt> [<args>], eliminated by RefCheck */

case class AppliedTypeTree(tpt: Tree, args: List[Tree]) extends TypTree

case class TypeBoundsTree(lo: Tree, hi: Tree) extends TypTree

case class ExistentialTypeTree(tpt: Tree, whereClauses: List[Tree]) extends TypTree

Other type refs are parsed as Select nodes, as the example in Sec. 3.2 shows.

3.2 Example: AppliedTypeTree

For example,

val charList : List[Char] = List(’a’,’b’,’c’)

results in:

The screen capture is there just to show that the text fragment “List” is repre-
sented as a Select, while the parse node for “Char” now lives in its own TypeTree

(different from that where the AppliedTypeTree lives).

3.3 Productions building those nodes

TODO: explore typ(), simpleType(), etc. in Parsers.scala

4 Parse tree counterpart to an AST type ref

“Standalone type references” may appear in:

1. isInstanceOf[X], asInstanceOf[X]

2. parent in extends clause

5

3. tpt of a ValDef (local or template variable, or formal value param)
this tpt is a TypeTree by the time we get our hands at it (i.e., after typer)

4. tpt of a DefDef

5. one of the args (i.e., a type param) in a TypeApply

(a TypeApply is visited, it is not wrapped as orig in a TypeTree).

6. bound, be it lower or upper (context and view bounds are desugared to
implicit arguments)

• see TypeDef and TypeBounds

• With or without parameter

7. Typed, e.g. (4 + 5): Int

8. a by-name flag can only appear in the type of a value param. Quoting
from TreeInfo.scala:

/** Is tpt a by-name parameter type? */

def isByNameParamType(tpt: Tree) = tpt match {

case TypeTree() =>

definitions.isByNameParamType(tpt.tpe)

case AppliedTypeTree(Select(_, tpnme.BYNAME_PARAM_CLASS_NAME), _) =>

true

case _ => false

}

9. Only the last param in a value param list can have repeated type. Quoting
from TreeInfo.scala:

/** Is tpt of the form T* ? */

def isRepeatedParamType(tpt: Tree) = tpt match {

case TypeTree() =>

definitions.isRepeatedParamType(tpt.tpe)

case AppliedTypeTree(Select(_, tpnme.REPEATED_PARAM_CLASS_NAME), _) =>

true

case AppliedTypeTree(Select(_, tpnme.JAVA_REPEATED_PARAM_CLASS_NAME), _) =>

true

case _ => false

}

10. import (but no rewriting in J2K operates on import clauses)

11. (a self-type falls under ValDef)

12. the ClassQualifier in

[id ’.’] ’super’ [ClassQualifier] ’.’ id \\

13. not in a path designator (§6.4 in SLS) but in a type projection (with hash)

14. in a TypedPatten,
be it as part of a catch clause in an enclosing Try
or in a case clause in an enclosing Match

6

5 Implementations

5.1 Type mappings in jdk2ikvm

The big picture of IKVMUpcaster is shown in Figure 3. After determining
whether the received node is a TypeTree, it goes on to visit its contents (which
are skipped during normal traversals).

• A helper method (shouldSubst(tree)) informs whether the ranged tree

(1) matches the substitution condition and (2) its corresponding text frag-
ment hasn’t been ruled out as an exception (e.g., occurrences of “AnyRef”
are not rewritten to “Object”).

• Another helper method (trySubst) actually performs the rewriting, if in-
structed to do so by replSourceFragmentForASTType, as discussed below.

/** precond: sourceFrag must have a TypeTree as dominator over the "AST node containment" hierarchy,

* ie. sourceFrag should *not* be visitable by a Tree traverser

* (which skips the ‘orig’ node contained in a TypeTree, and its contained nodes, and so on. */

def replSourceFragmentForASTType(sourceFrag: Tree) {

sourceFrag match {

case SingletonTypeTree(ref) => replSourceFragmentForASTType(ref)

case SelectFromTypeTree(qualifier, name) => replSourceFragmentForASTType(qualifier)

case CompoundTypeTree(templ) => replSourceFragmentForASTType(templ)

case AppliedTypeTree(tpt, args) =>

replSourceFragmentForASTType(tpt)

for (arg <- args) { replSourceFragmentForASTType(arg) }

case TypeBoundsTree(lo, hi) =>

replSourceFragmentForASTType(lo)

replSourceFragmentForASTType(hi)

case ExistentialTypeTree(tpt, whereClauses) =>

replSourceFragmentForASTType(tpt)

for (wc <- whereClauses) { replSourceFragmentForASTType(wc) }

case tt : TypeTree if (tt.original != null) =>

replSourceFragmentForASTType(tt.original)

case Annotated(annot, arg) =>

// TODO children not visited on purpose although I would like to know more about them

// warning(sourceFrag.pos, "Annotated(annot, arg) not visited in replSourceFragmentForASTType")

case other if (shouldSubst(other)) => trySubst(other)

case _ =>

/* children of this node won’t be visited by IKVMUpcaster.this.collectPatches,

* because this node lives inside a TypeTree to start with.

* We shouldn’t need to visit them anyway, but the warning is there to help discover overlooked cases. */

val substCandidates = (new CollectRangedNodes apply sourceFrag) filter (rn => shouldSubst(rn))

if(substCandidates.nonEmpty) {

for (rn <- substCandidates) {

warning(rn.pos, "ranged node contained in a TypeTree not substituted by replSourceFragmentForASTType")

}

}

}

}

TODO: rewrite inside type annotations, see http://www.scala-lang.org/sid/5

7

Figure 2: Sec. 5.2

5.2 Type erasure in jdk2ikvm

It’s a fact of life that the IKVM library does away with the type params
and arguments of JDK counterparts5, as shown for example for j.u.Iterator

and j.u.List in Figure 2. As usual, ikvmc (the IKVM compiler) takes care of
wall-papering over this.

As a result, jdk2ikvm will similarly have to wall-paper, this time at the level
of Scala source code, by deleting type args (and adding downcasts). A source
file that showcases most of the required rewritings is JavaConversions.scala.
Without those rewritings, when compiling forMSIL against IKVM’s .dll we get
errors like:

5http://stackoverflow.com/questions/1477038/doesnt-ikvm-net-support-generics-type-parameters

8

http://stackoverflow.com/questions/1477038/doesnt-ikvm-net-support-generics-type-parameters

JavaConversions.scala:71: error: java.util.Iterator does not take type parameters

implicit def asJavaIterator[A](i : Iterator[A]): ju.Iterator[A] = i match {

^

5.3 Deconstructing types

As with the rewriting to map types, we have to traverse type constituents.
However in this case a typeSymbol won’t be enough as applicability condition for
a rewriting, we also need a tpe. Additionally, we need a tandem decomposition
of TypTree and Type (“in tandem” because we don’t want to lose track of the
RangePosition for a given Type value).

In all cases, the entry point is:

eraseTypeArgs(sourceFrag: Tree, sourceFragTpe: Type)

Particular cases of “in tandem deconstruction” are listed below:

• Type application:

case att @ AppliedTypeTree(tpt, args) =>

if(shouldErase(sourceFragTpe)) erase(att)

else {

eraseTypeArgs(tpt, sourceFragTpe.typeConstructor)

for ((arg, tpe) <- args zip sourceFragTpe.typeArgs) { eraseTypeArgs(arg, tpe) }

}

• Type bounds:

case TypeBoundsTree(lo, hi) =>

eraseTypeArgs(lo, sourceFragTpe.bounds.lo)

eraseTypeArgs(hi, sourceFragTpe.bounds.hi)

• etc.

9

F
ig

u
re

3
:

S
ec

.
5
.1

10

	Background
	Motivation: ``Upcastings'' needed in jdk2ikvm
	Compiler-supported type maps (we want range positions instead)

	Type refs and the parser
	AST nodes of interest
	Example: AppliedTypeTree
	Productions building those nodes

	Parse tree counterpart to an AST type ref
	Implementations
	Type mappings in jdk2ikvm
	Type erasure in jdk2ikvm
	Deconstructing types

