
The backend that makes scalac faster for real

The backend that makes scalac faster for real

Miguel Garcia
http://lamp.epfl.ch/~magarcia

LAMP, EPFL

2013-04-11

1 / 8

http://lamp.epfl.ch/~magarcia


The backend that makes scalac faster for real

Outline

Background
Why a new optimizer
Workflow of the new optimizer

Under the hood
Bytecode emitter (GenBCode)
Intra-method optimizations
More compact code

Lessons learnt about speeding up the compiler

2 / 8



The backend that makes scalac faster for real

Background

Why a new optimizer

I you may have heard scalac could be faster
I maintainability, upgradability of the current optimizer. Quote:

The new backend, http://magarciaepfl.github.io/scala/
I makes the compiler 15% faster (uptime, also lowering CPU time)
I emits 10% more compact code (and that’s without -neo:o1)
I documented
I future-proof (ASM-based, e.g. in view of Java 8)

3 / 8

http://magarciaepfl.github.io/scala/


The backend that makes scalac faster for real

Background

Workflow of the new optimizer

Level 1: Intra-method optimizations

Levels 2 and 3: Intra-program and Cross-libraries, resp.

Simplicity of each component contributes to overall simplicity

4 / 8



The backend that makes scalac faster for real

Under the hood

Bytecode emitter (GenBCode)

AST ClassDef node → ASM ClassNode easier than expected:

I CFG not necessary

I just visit pre-order an expression node. Gist:

def genNormalMethodCall() {

if (invokeStyle.hasInstance) { genLoadQualifier(fun) }

genLoadArguments(args, paramTKs(app))

// ASM visitMethodInsn(Opcodes.INVOKEVIRTUAL, owner, name, desc)
}

Additionally, not seen before features like:

I more thorough outer-pointer elimination, https:

//github.com/magarciaEPFL/scala/commit/0a426b640411ee85983a6deb8a5612ebaa6d5ff3

I method handles, to cut down on anonymous-closure classes

I distinction between intra-program and cross-library inlining
5 / 8

https://github.com/magarciaEPFL/scala/commit/0a426b640411ee85983a6deb8a5612ebaa6d5ff3
https://github.com/magarciaEPFL/scala/commit/0a426b640411ee85983a6deb8a5612ebaa6d5ff3


The backend that makes scalac faster for real

Under the hood

Intra-method optimizations

I Control-flow simplifications

I collapse a multi-jump chain to target its final destination via a
single jump

I remove unreachable code
I nullness propagation

I Propagation of known values

I copy propagation
I dead-store elimination
I Preserve side-effects, but remove those (producer, consumer)

pairs where the consumer is a DROP and the producer has its
value consumed only by the DROP in question.

I constant folding
I eliding box/unbox pairs
I eliding redundant local vars

Contrasting how the old and new optimizer tackle the same problem
https://github.com/scala/scala/pull/2214

6 / 8

https://github.com/scala/scala/pull/2214


The backend that makes scalac faster for real

Under the hood

More compact code

Just a few examples:

I method driver() in test/files/run/t7181.scala
I 881 instructions, after -neo:o2 -closurify:delegating
I 1004 instructions, with GenASM and -optimise

7 / 8



The backend that makes scalac faster for real

Lessons learnt about speeding up the compiler

“Late Closure Classes” was the single largest contributor to the 15%
speedup, because it results in less work for lambda lift, specialize, and
erasure, among others.

/*
* Transform a function node (x_1,...,x_n) => body

* of type FunctionN[T_1, .., T_N, R] to a Block

*
* {

* def hoisted(x_1: T_1, ..., x_N: T_n): R = body

*
* hoisted(zeroes-for-params-above).asInstanceOf[AbstractFunctionN[T_1, .., T_N, R]]

* }

*
* The bytecode emitter will either:

* (a) emit an anonymous closure class and its instantiation; or

* (b) emit a method handle given as

* constructor-argument to a closure instantiation.

*/
def closureConversionModern(fun: Function): Tree = {

8 / 8


	Background
	Why a new optimizer
	Workflow of the new optimizer

	Under the hood
	Bytecode emitter (GenBCode)
	Intra-method optimizations
	More compact code

	Lessons learnt about speeding up the compiler

