
Faster closures in Scala via Stack-allocation

Faster closures in Scala via Stack-allocation

Miguel Garcia
http://lamp.epfl.ch/~magarcia

LAMP, EPFL

2012-11-04

1 / 10

http://lamp.epfl.ch/~magarcia

Faster closures in Scala via Stack-allocation

Outline

Background
How uncurry goes about closure conversion
Some inescapable performance laws
Terminology

Candidate approaches
Early Inlining
Closures as method-handles, scala.FunctionX compatible

Which approach results in faster code?

2 / 10

Faster closures in Scala via Stack-allocation

Background

How uncurry goes about closure conversion

What we get for “(i => i < args.length)”
where “args” is a formal param of the enclosing method.

@SerialVersionUID(0)
final <synthetic>
class $anonfun$main$1
extends scala.runtime.AbstractFunction1$mcZI$sp
with Serializable {

final
def apply(i: Int): Boolean = apply$mcZI$sp(i);

<specialized>
def apply$mcZI$sp(v1: Int): Boolean = v1.<(args$1.length());

final <bridge>
def apply(v1: Object): Object = scala.Boolean.box(apply(scala.Int.unbox(v1)));

<synthetic> <paramaccessor>
private[this]
val args$1: Array[String] = _;

def <init>($outer: Test, args$1: Array[String]): anonymous class $anonfun$main$1 = {
$anonfun$main$1.this.args$1 = args$1;
$anonfun$main$1.super.<init>();
()

}

}

3 / 10

Faster closures in Scala via Stack-allocation

Background

Some inescapable performance laws

A few steadfast performance characteristics:

1. Nothing beats stack-allocation

2. Stack-traffic always cheaper than
pointer-chasing over heap-allocated data

3. Passing IntRef and friends on the stack not really a problem:
the VM’s Escape Analysis (usually) stack-allocates them.

4. Corollary: lifting local methods is OK, lifting closures is bad

Open question: Relative performance of

I calling a partially-applied method handle
vs.

I virtual invocation providing all arguments

4 / 10

Faster closures in Scala via Stack-allocation

Background

Terminology

Terminology

I Hi-O method: the “higher-order” method taking one or more
closure instances as argument. Example, Range.foreach()

I closure-state: the values of fields of an
anonymous-closure-class, all of them final. Usually including an
$outer field to access external locations other than
local-captures.

I closure-methods: besides apply() and its specialized
siblings, lambdalift turns apply()’s local methods into
closure-methods.

I closure-constructor: initializes the closure-state with
I THIS of the invoker, ie the closure’s $outer reference
I captured-locals
I the rest if accessed via $outer (one or more hops)

5 / 10

Faster closures in Scala via Stack-allocation

Candidate approaches

Candidate approaches:

1. Inlining at Hi-O callsite (assumes known method to dispatch):

1.1 before uncurry (aka “early inlining”)
1.2 in the experimental optimizer.

2. Closure apply() delegating to partially-applied method-handle

(1.1) and (1.2) result in stack-allocated closure-state, guaranteed.
The next few slides showcase (1.1) and (2.)
Extensive details about (1.2) at:
https://groups.google.com/d/topic/scala-internals/Hnftko0MzDM/discussion

6 / 10

https://groups.google.com/d/topic/scala-internals/Hnftko0MzDM/discussion

Faster closures in Scala via Stack-allocation

Candidate approaches

Early Inlining

rvc.hiO(<M-args> , closure , <N-args>).etc

can be converted (right before uncurry) into:

{
val rcv = ...
val m_1 = ... // and so on for the M-args and the N-args
val n_1 = ...

def closureApply(<as-in-original>) :

def inlinedHiO(rcv, <M-fmls> , <N-fmls>) : ... {
// body of Hi-O adapted to use corresponding formal
//
// LOAD closure-arg followed by INVOKEVIRTUAL apply()
// becomes
// closureApply() callsite, initially with original args
// (lambdalift will stack all needed closure state)

}

inlinedHiO(rcv, m_1, ... /* closure skipped */ , n_1, ...)

}.etc
7 / 10

Faster closures in Scala via Stack-allocation

Candidate approaches

Closures as method-handles

A transformation in two phases. First step, on entry to uncurry:

rcv.hiO(... , Function(vparams, body) , ...).etc

can be transformed into:

{
def closureApply(<Function.vparams>) = <Function.body>

closureApply(<zero-at-each-arg>)
// fake call to be removed after lambdalift stacks closure-state

val mhApply: MethodHandle = null
// rhs will become (in the 2nd step) a partially-applied MH

rcv.hiO(... , InvokeExactFunction , ...).etc
}

where InvokeExactFunction is a Function node with body:

I mhApply.invokeExact(<Function-vparams>)

I encoding Function.body’s type as return type of that callsite.
8 / 10

Faster closures in Scala via Stack-allocation

Candidate approaches

Closures as method-handles

Second step, on exit from lambdalift:

{
def closureApply(<Function.vparams> ,

outer,
captured-locals) =

<Function.body>

// lambdalift appended arguments (outer and captured-locals)
// to the fake call that used to be here.
// Note down those arguments and remove the call.

val mhApply: MethodHandle =
<constant MH targeting ‘closureApply‘,
partial-binding the extra args
borrowed from the removed callsite>

rcv.hiO(... , InvokeExactFunction , ...).etc
}

9 / 10

Faster closures in Scala via Stack-allocation

Which approach results in faster code?

To recap, candidate approaches:

1. Inlining at Hi-O callsite (assumes known method to dispatch):

1.1 before uncurry (aka “early inlining”)
1.2 in the experimental optimizer.

2. Closure apply() delegating to partially-applied method-handle

Some factors influencing resulting speed:

I stack-allocation (of closure-state) always faster than alternatives

I code duplication (of the Hi-O method) taxes the JIT compiler

I relative performance of MH partial-binding wrt direct call

10 / 10

	Background
	How uncurry goes about closure conversion
	Some inescapable performance laws
	Terminology

	Candidate approaches
	Early Inlining
	Closures as method-handles, scala.FunctionX compatible

	Which approach results in faster code?

