
GC-savvy Closure conversion

GC-savvy Closure conversion

Miguel Garcia
http://lamp.epfl.ch/~magarcia

LAMP, EPFL

2012-07-03

1 / 11

http://lamp.epfl.ch/~magarcia

GC-savvy Closure conversion

Outline

Status-quo of Closure conversion in scalac
Optimizations already in place

Lightweight optimizations
1 of 2: Special-case inlining for forwarders to specialized methods
2 of 2: “Proceduralization” before UnCurry

Heavyweight optimizations

How can MethodHandles help with Closure conversion?

2 / 11

GC-savvy Closure conversion

Status-quo of Closure conversion in scalac

What we get now, say for “(i => i < args.length)”
where “args” is a formal param of the enclosing method.

@SerialVersionUID(0)
final <synthetic>
class $anonfun$main$1
extends scala.runtime.AbstractFunction1$mcZI$sp
with Serializable {

final
def apply(i: Int): Boolean = apply$mcZI$sp(i);

<specialized>
def apply$mcZI$sp(v1: Int): Boolean = v1.<(args$1.length());

final <bridge>
def apply(v1: Object): Object = scala.Boolean.box(apply(scala.Int.unbox(v1)));

<synthetic> <paramaccessor>
private[this]
val args$1: Array[String] = _;

def <init>($outer: Test, args$1: Array[String]): anonymous class $anonfun$main$1 = {
$anonfun$main$1.this.args$1 = args$1;
$anonfun$main$1.super.<init>();
()

}

}

3 / 11

GC-savvy Closure conversion

Status-quo of Closure conversion in scalac

Optimizations already in place

Optimizations already in place:

I GC tracks liveness of formal-params via DFA, so that
closures received as argument may be GC’ed before method exit.
No need to null-out right after last use (doable at bytecode level).

I In some cases, the $outer field and its accessor are eliminated
due to the following in Constructors:

// Could symbol’s definition be omitted, provided it is not accessed?
// This is the case if the symbol is defined in the current class, and
// (the symbol is an object private parameter accessor field, or
// the symbol is an outer accessor of a final class which does not override another outer accessor.)
def maybeOmittable(sym: Symbol) = sym.owner == clazz && (

sym.isParamAccessor && sym.isPrivateLocal ||
sym.isOuterAccessor && sym.owner.isEffectivelyFinal && !sym.isOverridingSymbol &&
!(clazz isSubClass DelayedInitClass)

)

4 / 11

GC-savvy Closure conversion

Lightweight optimizations

1 of 2: Special-case inlining for forwarders to specialized methods

In a “forwarder-to-specialized,” caller and callee share the same
signature. Example:

final def apply(i: Int): Boolean = apply$mcZI$sp(i);

<specialized> def apply$mcZI$sp(v1: Int): Boolean = v1.<(5);

Their inlining increases method size, adding superfluous locals.

Alternatives:

1. inline without adding superfluous locals, or

2. run both closelim and dce in-between inlining iterations
(required to remove boxing and superfluous locals). Slow.

5 / 11

GC-savvy Closure conversion

Lightweight optimizations

2 of 2: “Proceduralization” before UnCurry

Instead of converting a Function node to

Block(List(local-ClassDef), <| instantiation-of-localclass |>)

convert to

Block(List (<| val rcv = ... |> ,
DefDef-inlinedA ,
DefDef-inlinedB) ,

<| invocation-of-inlinedA |>)

where DefDef-A is an (early inlined) higher-order method,
with two changes in its body:

I replace This with the original receiver (“rcv” above).

I applications of the function-arg rephrased as invocations of
DefDef-B (which in turn is derived from the closure body)

6 / 11

GC-savvy Closure conversion

Lightweight optimizations

2 of 2: “Proceduralization” before UnCurry

Example: “(1 to 10) foreach println” becomes:

{ val rcv = Predef.intWrapper(1).to(10)

def inlinedA() {
/*- OK the condition below should either

(1) veto early-inlining as a whole; or
(2) be inlined to invoke ‘inlinedB(i)‘;

Workaround: make Range.foreach not pass the fun-arg around.*/
if (rcv.validateRangeBoundaries(f)) {

var i = rcv.start
val terminal = rcv.terminalElement
val step = rcv.step
while (i != terminal) {

inlinedB(i) /*- this used to be ‘f(i)‘ */
i += step

}
}

}

def inlinedB(x: Int): Unit = Predef.println(x);

inlinedA()
}

7 / 11

GC-savvy Closure conversion

Lightweight optimizations

2 of 2: “Proceduralization” before UnCurry

1. Pros:
I no object instantiation

2. Cons:
I number of method calls isn’t reduced
I code duplication

3. Both “DefDef-inlinedA” and “DefDef-inlinedB”
may contain returns (in the latter, we can detect whether a
return is non-local to avoid mistakes).

4. WARNING what if the closure-instantiation has constructor-args
with side-effects (initialization of lazy-vals).

5. Most useful in connection with another rewriting, right before
lambda-lift: “inlining-of-local-methods-invoked-just-once”.
https://groups.google.com/d/msg/scala-internals/KMp-5DNn5NI/Ac_-lTPBxDsJ.

8 / 11

https://groups.google.com/d/msg/scala-internals/KMp-5DNn5NI/Ac_-lTPBxDsJ

GC-savvy Closure conversion

Heavyweight optimizations

Heavyweight optimizations (analysis of higher-order control-flow)

1. Let’s assume a mutable local L, captured by a closure C, ie C has
a constructor arg of type ...Ref for L. In case L isn’t modified from
the time C is instantiated till the last (read) access in C, then L
can be passed by value. Caveat: the conversion of L to ...Ref
might still be imposed by other closures or local classes.

2. http://blog.cdleary.com/2010/05/notes-from-the-js-pit-closure-optimization

“As long as there’s no possibility of escape between a
declaration and its use in a nested function, the nested
function knows exactly how far to reach up the stack to
retrieve or manipulate the variable — the activation record
stack is totally determined at compile time. Because there’s
no escaping, there’s not even any need to import the upvar
into the Algol-like function.”

9 / 11

http://blog.cdleary.com/2010/05/notes-from-the-js-pit-closure-optimization

GC-savvy Closure conversion

How can MethodHandles help with Closure conversion?

MethodHandle: enabler for invokedynamic (JSR 292)

1. seen as a type-safe function pointer:

1.1 can be invoked via invokeExact() (no auto-boxing)
1.2 method access checks are based on a method handle’s creator,

not its caller (invoke private and super methods from anywhere)

2. seen as an object:

2.1 ldc bytecode refers to a constant MH
2.2 can bind arguments (partial application)
2.3 closed under composition with other MHs. Use cases:

I function composition, argument adaptation via casting or boxing
I runtime metaprogramming http://lamp.epfl.ch/~magarcia/

ScalaCompilerCornerReloaded/2012Q2/RuntimeMP.pdf

More info:
John Rose. Bytecodes meet combinators: invokedynamic on the JVM
http://cr.openjdk.java.net/~jrose/pres/200910-VMIL.pdf

10 / 11

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2012Q2/RuntimeMP.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2012Q2/RuntimeMP.pdf
http://cr.openjdk.java.net/~jrose/pres/200910-VMIL.pdf

GC-savvy Closure conversion

How can MethodHandles help with Closure conversion?

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html

The Java 8 design (JSR 335)

I favors compatibility with pre-MH libraries, which use eg Runnable.

I at the cost of instantiation overhead (as compared to raw MHs)

I minimized by VM-specific meta factories offered by JDK API

Highlights:
1. “Instead of generating bytecode to create the object

that implements the lambda expression . . . we delegate
the actual construction to the language runtime . . . so
that . . . JRE implementations can choose their
preferred implementation strategy.”

2. “Performance impact: Serializability imposes some
additional costs on lambdas . . . Therefore it is
preferable to treat serializable lambdas separately
rather than making all lambdas serializable, and
imposing these costs on all lambdas.”

11 / 11

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html

	Status-quo of Closure conversion in scalac
	Optimizations already in place

	Lightweight optimizations
	1 of 2: Special-case inlining for forwarders to specialized methods
	2 of 2: ``Proceduralization'' before UnCurry

	Heavyweight optimizations
	How can MethodHandles help with Closure conversion?

