
What the optimizer does to your code

What the optimizer does to your code

Miguel Garcia
http://lamp.epfl.ch/~magarcia

LAMP, EPFL

2012-04-18

1 / 12

http://lamp.epfl.ch/~magarcia

What the optimizer does to your code

Outline

Things the optimizer is good at
Example
Pros and Cons

Ongoing and Future work
Early inlining
Parallelizing an optimization phase

Further information

2 / 12

What the optimizer does to your code

Things the optimizer is good at

The optimizer strives to “proceduralize” code patterns of the form:

1. instantiation of anonymous-closure class — “A”

2. monadic call (foreach, filter, etc) with A argument — “M”
Note: for JIT purposes, this callsite may or may not be hot

3. application of A in the callee’s body (usually, inside a loop)

The above results from rephrasing AST function nodes via OO

3 / 12

What the optimizer does to your code

Things the optimizer is good at

Example

I Example:

var captured = 123
for(i <- 1 to 10) { Console.print(xs(i) + captured) }

I What the optimizer gets to see (simplified)

var captured: Int = 123;
/*- ‘foreach‘ invocation on Range */
scala.Predef.intWrapper(1).to(10).foreach[Unit]({

/*- class definition local to block expression */
final class $anonfun
extends scala.runtime.AbstractFunction1[Int,Unit]
with Serializable {
/*- argless constructor omitted */
def apply(i: Int) { Console.print(xs(i) + captured) }

} // end of class $anonfun

(new $anonfun()) /*- argument to ‘foreach‘ */
})

4 / 12

What the optimizer does to your code

Things the optimizer is good at

Pros and Cons

I Resulting while loop (excerpt)

79: iload 9 /* loop condition */
81: iload 6
83: if_icmpne 87 /* iterate */
86: return
87: getstatic #50; //Field scala/Console$.MODULE$:Lscala/Console$;
90: new #52; //class scala/collection/mutable/StringBuilder
. . .
135: goto 79 /* backedge starts here */

I Pros: fewer classes (inlined closures can be removed)

I Cons: as with all inlining, code duplication

Tracing the inliner’s reasoning: -Ylog:inliner -Ydebug
5 / 12

What the optimizer does to your code

Ongoing and Future work

Early inlining

Closure elimination alone is not enough. Example:

def nonLocalReturnExample(a: Int, b: Int): Boolean = {
for (i <- 2 to b) if (a % i != 0) return false;
true

}

def nonLocalReturnExample(a: Int, b: Int): Boolean = {
val retKey = new Object();
try {
scala.Predef.intWrapper(2).to(b).foreach[Unit]({
final class $anonfun extends AbstractFunction1[Int,Unit] {
def apply(i: Int) {
if (a.%(i).!=(0))
throw new NonLocalReturnControl(retKey, false)
/*- ‘return false‘ would quit ‘apply()‘ only */

}
}; (new $anonfun()) });

true
} catch { case (ex @ (_: NonLocalReturnControl)) =>

if (ex.key eq retKey) ex.value.asInstanceOf[Boolean]
else throw ex

}
}

6 / 12

What the optimizer does to your code

Ongoing and Future work

Applicability conditions

And now the fine print:

Given a callsite receiving a Function AST node as last argument
(anon-closure), early inlining is feasible when:

I the callee to dispatch at runtime is known statically,

I the argument is used at most once in the concrete method
(to invoke apply(), ie. no excessive code duplication).

Two cases:

I the AST of the concrete method is being compiled, or

I bytecode can be loaded (and decompiled into an Scala AST).

Simpler CFG, instruction count halved, no exception handling

7 / 12

What the optimizer does to your code

Ongoing and Future work

Parallelizing an optimization phase

Dead-code elimination focuses on a single method at a time.
A recipe for task parallelism:

I Work items are queued in a
java.util.concurrent.PriorityBlockingQueue

I Larger methods processed first (for load balancing)

I “No more work” is signalled by poison pills

// once the queue is full ...
val exec = java.util.concurrent.Executors.newFixedThreadPool(MAX_THREADS)
val workers =
for(i <- 1 to MAX_THREADS)
yield { val t = new DCETask(q, poison); exec.execute(t); t }

workers foreach { w => q put poison }
exec.shutdown()
while(!exec.isTerminated) {
exec.awaitTermination(1, TimeUnit.MILLISECONDS)

}
assert(q.isEmpty)

8 / 12

What the optimizer does to your code

Ongoing and Future work

Parallelizing an optimization phase

Well, let’s not forget about synchronization:

I make mutable-shared-state not shared across threads (e.g.,
Linearizer and Peephole are now instance-level and thus
not shared across tasks submitted to Executor)

I now the tricky part. Lock all accesses to the typer, i.e. calls
Tree.tpe or Symbol.info

private def getProduced(i: Instruction): Int = {
if(i.isInstanceOf[opcodes.CALL_METHOD]) {
/*- CALL_METHOD.produced() calls producedType */
global synchronized i.produced

} else i.produced
}

9 / 12

What the optimizer does to your code

Ongoing and Future work

Parallelizing an optimization phase

With 8 threads,
3x speedup
(additional threads
are useless,
due to contention
on typer).

10 / 12

What the optimizer does to your code

Ongoing and Future work

Parallelizing an optimization phase

Load-balancing and all, there can be and there are outliers:

A single work-unit (top line) holds its poor worker busy, even after all
other workers are done and sit idle.

11 / 12

What the optimizer does to your code

Further information

Summing up:

I 2.10 includes a significantly faster optimizer

I Improvements on the way (early inlining, parallel optimizer)

I Longer term, candidate ideas for more radical improvements
(three-address code, effects analysis, runtime monomorphization)

http://lampwww.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/

12 / 12

http://lampwww.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/

	Things the optimizer is good at
	Example
	Pros and Cons

	Ongoing and Future work
	Early inlining
	Parallelizing an optimization phase

	Further information

