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Things the optimizer is good at

The optimizer strives to “proceduralize” code patterns of the form:

1. instantiation of anonymous-closure class — “A”

2. monadic call (foreach, filter, etc) with A argument — “M”
Note: for JIT purposes, this callsite may or may not be hot

3. application of A in the callee’s body (usually, inside a loop)

The above results from rephrasing AST function nodes via OO
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Things the optimizer is good at

Example

I Example:

var captured = 123
for(i <- 1 to 10) { Console.print(xs(i) + captured) }

I What the optimizer gets to see (simplified)

var captured: Int = 123;
/*- ‘foreach‘ invocation on Range */
scala.Predef.intWrapper(1).to(10).foreach[Unit]({

/*- class definition local to block expression */
final class $anonfun
extends scala.runtime.AbstractFunction1[Int,Unit]
with Serializable {
/*- argless constructor omitted */
def apply(i: Int) { Console.print(xs(i) + captured) }

} // end of class $anonfun

(new $anonfun()) /*- argument to ‘foreach‘ */
})
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Things the optimizer is good at

Pros and Cons

I Resulting while loop (excerpt)

79: iload 9 /* loop condition */
81: iload 6
83: if_icmpne 87 /* iterate */
86: return
87: getstatic #50; //Field scala/Console$.MODULE$:Lscala/Console$;
90: new #52; //class scala/collection/mutable/StringBuilder
. . .
135: goto 79 /* backedge starts here */

I Pros: fewer classes (inlined closures can be removed)

I Cons: as with all inlining, code duplication

Tracing the inliner’s reasoning: -Ylog:inliner -Ydebug
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Ongoing and Future work

Early inlining

Closure elimination alone is not enough. Example:

def nonLocalReturnExample(a: Int, b: Int): Boolean = {
for (i <- 2 to b) if (a % i != 0) return false;
true

}

def nonLocalReturnExample(a: Int, b: Int): Boolean = {
val retKey = new Object();
try {
scala.Predef.intWrapper(2).to(b).foreach[Unit]({
final class $anonfun extends AbstractFunction1[Int,Unit] {
def apply(i: Int) {
if (a.%(i).!=(0))
throw new NonLocalReturnControl(retKey, false)
/*- ‘return false‘ would quit ‘apply()‘ only */

}
}; (new $anonfun()) });

true
} catch { case (ex @ (_: NonLocalReturnControl)) =>

if (ex.key eq retKey) ex.value.asInstanceOf[Boolean]
else throw ex

}
}
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Ongoing and Future work

Applicability conditions

And now the fine print:

Given a callsite receiving a Function AST node as last argument
(anon-closure), early inlining is feasible when:

I the callee to dispatch at runtime is known statically,

I the argument is used at most once in the concrete method
(to invoke apply(), ie. no excessive code duplication).

Two cases:

I the AST of the concrete method is being compiled, or

I bytecode can be loaded (and decompiled into an Scala AST).

Simpler CFG, instruction count halved, no exception handling
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Ongoing and Future work

Parallelizing an optimization phase

Dead-code elimination focuses on a single method at a time.
A recipe for task parallelism:

I Work items are queued in a
java.util.concurrent.PriorityBlockingQueue

I Larger methods processed first (for load balancing)

I “No more work” is signalled by poison pills

// once the queue is full ...
val exec = java.util.concurrent.Executors.newFixedThreadPool(MAX_THREADS)
val workers =
for(i <- 1 to MAX_THREADS)
yield { val t = new DCETask(q, poison); exec.execute(t); t }

workers foreach { w => q put poison }
exec.shutdown()
while(!exec.isTerminated) {
exec.awaitTermination(1, TimeUnit.MILLISECONDS)

}
assert(q.isEmpty)
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Ongoing and Future work

Parallelizing an optimization phase

Well, let’s not forget about synchronization:

I make mutable-shared-state not shared across threads (e.g.,
Linearizer and Peephole are now instance-level and thus
not shared across tasks submitted to Executor)

I now the tricky part. Lock all accesses to the typer, i.e. calls
Tree.tpe or Symbol.info

private def getProduced(i: Instruction): Int = {
if(i.isInstanceOf[opcodes.CALL_METHOD]) {
/*- CALL_METHOD.produced() calls producedType */
global synchronized i.produced

} else i.produced
}
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Ongoing and Future work

Parallelizing an optimization phase

With 8 threads,
3x speedup
(additional threads
are useless,
due to contention
on typer).
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Ongoing and Future work

Parallelizing an optimization phase

Load-balancing and all, there can be and there are outliers:

A single work-unit (top line) holds its poor worker busy, even after all
other workers are done and sit idle.

11 / 12



What the optimizer does to your code

Further information

Summing up:

I 2.10 includes a significantly faster optimizer

I Improvements on the way (early inlining, parallel optimizer)

I Longer term, candidate ideas for more radical improvements
(three-address code, effects analysis, runtime monomorphization)

http://lampwww.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/
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