
The mixin phase

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

October 10th, 2011

Abstract

Now that we understand the workings of AddInterfaces, how difficult can
it be to understand mixin? As a warm-up, Sec. 1 gives a bird’s eye view
of this phase (in terms of input and output AST shapes, and a summary
of the transformation). A detailed description comes next, structured
along the main stages that the transformation comprises (pre and post
transforms, as well as type rewriting in transformInfo). In order to ease
things even further, Sec. 3 checkpoints the status of ASTs in-between pre
and post transforms.

phase name id description

---------- -- -----------

parser 1 parse source into ASTs, perform simple desugaring

namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects

typer 4 the meat and potatoes: type the trees

superaccessors 5 add super accessors in traits and nested classes

pickler 6 serialize symbol tables

refchecks 7 reference/override checking, translate nested objects

liftcode 8 reify trees

uncurry 9 uncurry, translate function values to anonymous classes

tailcalls 10 replace tail calls by jumps

specialize 11 @specialized-driven class and method specialization

explicitouter 12 this refs to outer pointers, translate patterns

erasure 13 erase types, add interfaces for traits

lazyvals 14 allocate bitmaps, translate lazy vals into lazified defs

lambdalift 15 move nested functions to top level

constructors 16 move field definitions into constructors

flatten 17 eliminate inner classes

/*---*/

mixin 18 mixin composition

/*---*/

cleanup 19 platform-specific cleanups, generate reflective calls

icode 20 generate portable intermediate code

. . .

1

http://lamp.epfl.ch/~magarcia

Contents

1 Overview 3
1.1 A note on terminlogy . 3
1.2 Input shapes . 3

1.2.1 What used to be non-interface traits 3
1.2.2 What composed-classes will look like 4

1.3 Output shapes . 4
1.4 End-to-end transformation . 4

2 At current phase (“preTransform”) 5
2.1 Type rewriting for interface facets: Adding symbols for accessors

to composite-owned fields . 5
2.2 Type rewriting for composites (1 of 2): Completing support for

interface facets . 5
2.3 Type rewriting for composites (2 of 2): Adding symbols for for-

warders . 7
2.4 Term rewriting (1 of 2): Implementation classes 7
2.5 Term rewriting (2 of 2): The rest 8

3 AST changes so far: a checklist 8

4 transformInfo 9

5 At next phase (“postTransform”) 10
5.1 Super-refs . 10
5.2 When in implementation-module, detour This to current self-param 10
5.3 Accesses to composite-owned fields over self-param 11
5.4 Callsites re-targeted to impl-module-methods 12
5.5 Appending term trees to interface facets and composites 12

5.5.1 Trees for interface facets 13
5.5.2 Trees for composites: Accessors 13
5.5.3 Trees for composites: Modules 13
5.5.4 Trees for composites: Fields 14
5.5.5 Trees for composites: Superaccessors 14
5.5.6 Trees for composites: Forwarders 14

2

1 Overview

1.1 A note on terminlogy

Adding to the terminology inherited from AddInterfaces, some more:

• composite class is short for “a non-trait class with some non-interface
traits among its mixinClasses ”. A finer distinction is class-to-be-composed
(before the mixin transform) vs. composed-class (after mixin). In these
notes, “composite class” refers to both.

• implementation module: what an impl-class becomes after mixin.

1.2 Input shapes

In essence, mixin assumes that AddInterfaces has splitted non-interface traits
and that constructors has rephrased template-initialization in terms of VM-
level fields + constructors. In particular, AddInterfaces has transformed:

• Non-interface traits, making them look as described in Sec. 1.2.1.

• Composite classes, making them look as described in Sec. 1.2.2

1.2.1 What used to be non-interface traits

Non-interface traits have vanished, each has been split by AddInterfaces into:

1. an interface-only facet, containing abstract methods (for super-accessors
and for public trait-members) and nested ClassDefs unless flatten has
run (in particular module classes resulting from refchecks desugaring of
objects)

2. an implementation class containing:

(a) an $init$ constructor (that name is reserved for the constructor of
an implementation class),

(b) all non-public members that used to reside in the non-interface trait,
i.e. private fields and private methods.

(c) so called “implementation methods”, which have an abstract coun-
terpart in the iface-facet. Once rewritten, they will be targeted by
forwarder methods in composed classes.

Regarding parents and subtypes:

• both interface and implementation facets have Object as super-class and
ScalaObject as super-interface.

• an implementation class may also extend other implementation classes
(this will be fixed up by mixin), it extends its interface-facet counterpart
(implementing zero, some, or all of that interface’s methods other than
super-accessors), and may also extend any interface-only traits that the
non-interface trait extended;

3

• an interface facet may extend other interface facets as well as any interface-
only traits that the non-interface trait extended. A class (whether trait
or not) that used to extend a non-interface trait now extends its interface
facet.

1.2.2 What composed-classes will look like

A composite class was rewritten by AddInterfaces to some extent. Besides being
made to inherit interface-facets, its primary constructor got trait-init-calls added
(precisely for those non-interface traits among its mixinClasses). However, these
callsites to trait-inits don’t yet pass a self-param (nor do trait-inits have a formal
param for it).

A note on typing: although at this point a composite class C lacks in gen-
eral implementations for methods in interfaces it extends (unless C happens
to override them), it still type checks because what we call “interface facets”
are still internally ClassSymbols with the TRAIT flag set (albeit also with the
ABSTRACT flag). Therefore the typechecker doesn’t complain C doesn’t support
all methods in all inherited interface facets. But the VM would.

1.3 Output shapes

There’s work to do before classes can be handed over to cleanup:

• The “breaking impl-class apart” perspective: all implementation
methods end up in the implementation module (an impl-module contains
only VM-level static methods, with an extra self-param as first argument,
and with their bodies rewritten to access private data not on This but via
the self-param.). And finally, some private members will be copied to each
composed class (private fields) while others end up in the implementation
module (helper methods invoked from implementation methods).

• The “pasting into a composed-class” perspective: in a composite
class, forwarders to implementation methods are missing, as well as own
copies of private fields.

1.4 End-to-end transformation

The division of labor between preTransform and postTransform revolves around
limiting AST typing (i.e., the invocation of localTyper.typed or typedPos) to
postTransform (which runs under atPhase(phase.next)), once certain info.decls

have grown by a few symbols appended in-place during preTransform (Sec. 2.1
to Sec. 2.3).

Other than that, the division of labor involves a limited amount of term
rewriting during preTransform (Sec. 2.4 and Sec. 2.5), with the heavy part of
term rewriting done in postTransform.

The same mnemonics as for AddInterfaces: rather than sticking with clazz,
sym, and so on, you may try instead with compoClazz, ifaceFacet, implClazz,
compoMember, etc. Makes wonders for readability (less context to keep in mind).

TODO a brief overview of postTransform

4

2 At current phase (“preTransform”)

At this point in the pipeline, classes can be classified into future-VM-classes
(those for which !csym.isTrait, including in particular implementation classes)
and those ready as VM-interfaces (csym.isTrait). Among the latter, the lateINTERFACE

ones resulted from trait splitting. The others were interface-only traits to start
with.

In a nutshell, the processing during preTransform comprises:

1. in-place additions to info.decls, for interface facets (Sec. 2.1) and for
composite classes (Sec. 2.2 and Sec. 2.3).

The symbols thus added correspond to Tree terms that are yet to be added
by addNewDefs in the case Template of postTransform (Sec. 5). Moreover,
addNewDefs decides what trees to paste based on these symbols, which can
be recognized by their Flags.MIXEDIN.

2. term rewriting focuses mostly on implementation classes (Sec. 2.4) but
other rewritings are also carried out (Sec. 2.5).

2.1 Type rewriting for interface facets: Adding symbols
for accessors to composite-owned fields

/** Add getters and setters for all non-module fields of an implementation

* class to its interface unless they are already present. This is done

* only once per class. The mixedin flag is used to remember whether late

* members have been added to an interface.

* - lazy fields don’t get a setter.

*/

def addLateInterfaceMembers(clazz: Symbol) {

Implementation methods require in general access to fields of a composed
class (including private ones) via a self-param (because all an impl-module
knows about a self-param is its type, an iface-facet). For that, MethodSymbols

have to be appended to the interface facet’s info.decls (at the current phase).
Operationally, addLateInterfaceMembers visits the val/var symbols in the impl-
class (skipping module-vars) and creates lateDEFERRED getters and setters in the
interface facet (actually, a setter isn’t added for val/vars of lazy fields or for
those having constant type).

There’s no map tracking “which compo-class-field for this iface-accessor”
because that lookup can be performed via “member.getter(ifaceFacet)”.

2.2 Type rewriting for composites (1 of 2): Completing
support for interface facets

/** Mix in members of trait ifaceFacet into class clazz. Also,

* for each lazy field in ifaceFacet, add a link from its mixed in member to its

* initializer method inside the implclass.

*/

def mixinTraitMembers(ifaceFacet: Symbol) {

5

This sub-step is part of addMixedinMembers (the other sub-step is described in
Sec. 2.3). Taken together, they add MethodSymbols to the info.decls of a com-
posite class (based on those in an interface-facet and those in an implementation
class, resp.)

In this first sub-step, symbols for concrete accessors, super-accessors, and
modules are created and added after inspecting an interface-facet. As a sidenote:
“ifaceFacet.info.decls” already contains accessors for composite-owned fields
(Sec. 2.1).

1. Mixing-in a concrete accessor (including back-up field and lazy-
initializer-tracking, if needed) consists in creating a composite-owned
MethodSymbol by “cloning before erasure”, which sets the type history of
the resulting clone at two points: erasure and current phase. As with
other cloning, the original symbol becomes alias of the resulting clone (in
the other direction, the alias of the original symbol remains unchanged).

That’s the basic procedure for all concrete accessors. For lazy accessors
and for getters, additional work is needed as described next.

• For a lazy getter, the initializer is looked up in the impl-class and
tracked as a pair (new-compo-member, impl-owned-init) in the map:

/** Map a lazy, mixedin field accessor to it’s trait member accessor */

val initializer = perRunCaches.newMap[Symbol, Symbol]

• For getters, its return type hints at whether we should mix-in the
back-up field as well (constant or Unit: don’t try to mix it in). Oth-
erwise add a new value symbol to the composite class’s info.decls.

2. Mixing-in a super-accessor consists in creating a composite-owned
symbol by cloning the interface-member in question. To recap from superaccessors,
the alias of an interface-owned super-selector symbol records the symbol
of the super-ref expression Select(sup @ Super(,mix), name). Now that
the actual super-type is known (“base” below is the composed class) that
alias is used to find out the symbol that is accessed by a super-accessor
in a mixin composition. That symbol becomes the alias of the composite-
owned super-accessor.

/** Returns the symbol that is accessed by a super-accessor in a mixin composition.

*

* @param base The class in which everything is mixed together

* @param member The symbol statically referred to by the superaccessor in the trait

* @param mixinClass The mixin class that produced the superaccessor

*/

private def rebindSuper(base: Symbol, member: Symbol, mixinClass: Symbol): Symbol =

3. Mixing-in a module getter: Unlike for concrete accessors, no “cloning
before erasure” nor special processing for lazy val nor back-up fields is
done. Unlike for super-accessors no alias bookkeeping is needed. Instead,
the symbol of an interface-owned module getter is cloned and added to
the composed class’s info.decls.

6

2.3 Type rewriting for composites (2 of 2): Adding sym-
bols for forwarders

/** Mix in members of implementation class mixinClass into class clazz */

def mixinImplClassMembers(impl: Symbol, iface: Symbol) {

The alias of the composite-owned forwarder is made to be the impl-owned
forwarded MethodSymbol.

for (implMember <- implClazz.info.decls) {

if (isForwarded(implMember)) {

val ifaceMember = implMember.overriddenSymbol(ifaceFacet)

if (ifaceMember.overridingSymbol(compoClazz) == NoSymbol &&

compoClazz.info.findMember(implMember.name, 0, lateDEFERRED, false).alternatives.contains(ifaceMember)) {

val compoMember = addMember(

compoClazz,

cloneBeforeErasure(ifaceFacet, compoClazz, ifaceMember)

setPos compoClazz.pos

resetFlag (DEFERRED | lateDEFERRED))

compoMember.asInstanceOf[TermSymbol] setAlias implMember;

}

}

}

2.4 Term rewriting (1 of 2): Implementation classes

Not every method in the impl-class will end up in the implementation module,
and those that do will undergo rewriting. Most of the transformInfo has to do
with these adjustments (Sec. 4).

The following rewritings affect different aspects of the ClassDef of an imple-
mentation class, they are performed in the match expression at preTransform():

First, what gets elided:

• all fields are elided, because they’re composite-owned after mixin. Sym-
bols for its accessors were added to the iface-facet (Sec. 2.1) and to the
composite class (including back-up field, Sec. 2.2).

TODO what happens with the trees of accessors that contain references to their symbols.

addNewDefs can reconstruct their bodies based only on symbols, right?

• methods that belong in the composite class are elided (such methods
“aren’t statically implemented”).

TODO addNewDefs must add them, as part of case Template in postTransform.

Definition of “Not statically implemented”:

• non-private modules: these are implemented directly in the mixin
composition class (private modules, on the other hand, are im-
plemented statically, but their module variable is not. all such
private modules are lifted, because non-lifted private modules
have been eliminated in ExplicitOuter)

7

• field accessors and super-accessors, except for lazy value acces-
sors which become initializer methods in the impl class (because
they can have arbitrary initializers)

But, not everything is elided from the implementation class. Those DefDefs
whose msym satisfies isImplementedStatically(msym) stay all the way to the im-
plementation module (those are all the members an impl-module will have).
The DefDefs in question have their formal params adjusted, to accomodate the
nme.SELF param (i.e., “$this”) that is the hallmark of forwarded methods. The
type of this param is the interface facet (thus the symbols for concrete acces-
sors added to that interface, Sec. 2.2). The body of impl-module-methods is
not transformed at this point, but transformInfo doesn’t overlook updating the
corresponding MethodSymbol.info (Sec. 4).

2.5 Term rewriting (2 of 2): The rest

1. In an interface-facet, a setter that was concrete in the non-interface trait
is marked with the scala.runtime.TraitSetter annotation.

TODO why?

2. Type tests and casts are adjusted from impl-class to iface-facet. Actually,
tpes are adjusted in-place, symbol.infos will take care of themselves:

case Apply(tapp @ TypeApply(fn, List(arg)), List()) =>

if (arg.tpe.typeSymbol.isImplClass) {

val ifacetpe = toInterface(arg.tpe)

arg.tpe = ifacetpe

tapp.tpe = MethodType(List(), ifacetpe)

tree.tpe = ifacetpe

}

tree

TODO Details about arg.symbol

3 AST changes so far: a checklist

• Interface facet: its info.decls contains symbols for super-accessors and
for public trait-members (already there on entry to mixin, Sec. 1.2.1), as
well as symbols for accessors to composite-owned fields (private or not),
lazy-getters (TODO: what about module-getters) (added in preTransform,
Sec. 2.1).

• Implementation class:

– The info.decls of an impl-class symbol contained a number of things
on entry to mixin (as summarized in Sec. 1.2.1: $init$ constructor
and what used to reside in the non-interface trait, which can be
classified into non-public members and “implementation methods”)
but most of that is gone due to transformInfo (however, the $init$

constructor stays, Sec. 4) which also removes all parents:

8

parents1 = List()

decls1 = new Scope(decls.toList filter isImplementedStatically)

– The template of an impl-class ClassDef contained on entry what’s
summarized above, but after preTransform it contains only the $init$

constructor, impl-module methods (Sec. 2.4), and nested ClassDefs
(unless flatten has run). Regarding the template’s parents list, so
far it hasn’t changed, but postTransform will rebuild it to match what
the ClassInfoType states:

val parents1 = currentOwner.info.parents map (t => TypeTree(t) setPos tree.pos)

• Composite class:

– The info.decls of a composite-class contains what it already had
on entry to mixin (Sec. 1.2.2) as well as symbols for field-accessors,
lazy-getters, module-getters, back-up fields, super-accessors, and for-
warders (all of them concrete, added in preTransform for each lateINTERFACE

parent among mixinClasses, Sec. 2.2 and Sec. 2.3).

– The ClassDef of a composite-class hasn’t changed so far.

4 transformInfo

The effects on type history of transformInfo() are most noticeable during
postTransform() (Sec. 5). Given that some type rewriting was performed in-
place during preTransform() (Sec. 2.1 to Sec. 2.3) there’s not much left to do
here.

A sweeping change affects the parents of all non-interface classes (except
implementation classes): any impl-class parents they might have are replaced
with their interface-facet counterpart.

parents1 = parents.head :: (parents.tail map toInterface)

TODO Does this change any parent at all?

I.e. can an impl-class be parent to any class other than an impl-class?

In case it does result in updated parents,

the corresponding term rewriting "will be done" in the case Template of postTransform.

The remaining changes involve implementation classes only:

• the signature of a forwarded method needs a self-param:

case MethodType(params, restp) =>

toInterfaceMap(

if (isImplementedStatically(sym)) {

val ownerParam = sym.newSyntheticValueParam(toInterface(sym.owner.typeOfThis))

MethodType(ownerParam :: params, restp)

} else

tp)

9

• the Scope of an impl-class keeps only forwarded methods

decls1 = new Scope(decls.toList filter isImplementedStatically)

• the impl-class is turned into a module (more precisely, a lateMODULE, but
this flag is never checked), all parents are elided (no more Object, no more
ScalaObject, either). sourceModule may have to be fabricated too.

parents1 = List()

The term-rewriting counterpart for Items 1 and 2 can be found in Sec. 2.4.
That for Item 3 is performed in the case Template of postTransform, Sec. 5.

5 At next phase (“postTransform”)

This step is the last chance to do term rewriting on a node: the input AST
comes from super.transform-ing a preTransform-ed tree (i.e., all children have
been visited) and neither postTransform nor its helpers trigger recursion into
children (i.e., children have been visited for good).

TODO Confirm that postTransform does not recurses via transform() into children

(this implies that its helpers also don’t).

Most of the screen real state associated to this step has to do with lazy
values (these notes don’t cover that).

TODO Is this step only about term rewriting?

If so, then one can assume symbol.info to remain stable during postTransform.

TODO Summary of subsections.

5.1 Super-refs

Static super-refs stay as-is, trait-level super-refs are callsites by now (thanks to
superaccessors), other super-refs handled by Sec. 5.4.

case Select(Super(_, _), name) =>

tree

5.2 When in implementation-module, detour This to cur-
rent self-param

case This(_) =>

transformThis(tree)

/** Replace a this reference to the current implementation class by the self

* parameter. Leave all other trees unchanged.

10

*/

private def transformThis(tree: Tree) = tree match {

case This(_) if tree.symbol.isImplClass =>

assert(tree.symbol == currentOwner.enclClass)

selfRef(tree.pos) /*- i.e. gen.mkAttributedIdent(self) setPos pos */

case _ =>

tree

}

5.3 Accesses to composite-owned fields over self-param

The case handlers below rewrite a Select or Assign into a callsite instead. The
callsite is pieced together from a MethodSymbol that is looked up on the iface-
facet, while the receiver is taken to be the Select’s qualifier. That qualifier, for
the self-case, was already rewritten as discussed in Sec. 5.2.

• reference to composite-owned-field via abstract iface-facet-owned getter

case Select(qual, name) if sym.owner.isImplClass && !isStaticOnly(sym) =>

assert(!sym.isMethod, "no method allowed here: %s%s %s".format(sym, sym.isImplOnly, flagsToString(sym.flags)))

// refer to fields in some implementation class via an abstract

// getter in the interface.

val iface = toInterface(sym.owner.tpe).typeSymbol

val getter = sym.getter(iface)

assert(getter != NoSymbol)

typedPos(tree.pos)((qual DOT getter)())

• assignment to composite-owned-field via abstract iface-facet-owned setter

case Assign(Apply(lhs @ Select(qual, _), List()), rhs) =>

// assign to fields in some implementation class via an abstract

// setter in the interface.

def setter = lhs.symbol.setter(

toInterface(lhs.symbol.owner.tpe).typeSymbol,

needsExpandedSetterName(lhs.symbol)

) setPos lhs.pos

typedPos(tree.pos) { (qual DOT setter)(rhs) }

11

5.4 Callsites re-targeted to impl-module-methods

case Apply(Select(qual, _), args) =>

/** Changes ‘qual.m(args)‘ where m refers to an implementation class method

* to ‘Q.m(S, args)‘ where Q is the implementation module of ‘m‘

* and S is the self parameter for the call, which is determined as follows:

* - if qual != super, qual itself

* - if qual == super,

* - if we are in an implementation class, the current self parameter.

* - otherwise, ‘this‘

*/

An invocation to a trait-method can appear in two places: a composed class
or the impl-module itself.

• Callsites in a composed class

– those were there on entry to mixin are part of user-written code,
they don’t result from any mixin reshuffling. They target already the
forwarded method. Therefore, they are left as-is.

– those in the body of a forwarder . . .

TODO

• Callsites in the impl-module itself are rewritten as described in the source
comment above.

5.5 Appending term trees to interface facets and compos-
ites

/** Add all new definitions to a non-trait class

* These fall into the following categories:

* - for a trait interface:

* - abstract accessors for all fields in the implementation class

* - for a non-trait class:

* - A field for every in a mixin class

* - Setters and getters for such fields

* - getters for mixed in lazy fields are completed

* - module variables and module creators for every module in a mixin class

* (except if module is lifted -- in this case the module variable

* is local to some function, and the creator method is static.)

* - A super accessor for every super accessor in a mixin class

* - Forwarders for all methods that are implemented statically

* All superaccessors are completed with right-hand sides (@see completeSuperAccessor)

* @param clazz The class to which definitions are added

*/

private def addNewDefs(clazz: Symbol, stats: List[Tree]): List[Tree] = {

addNewDefs stretches over 500 lines, and appends term trees to templates:

• It doesn’t add anything to an impl-module, which preTransform already
transformed to contain only impl-methods (albeit their bodies need rewrit-
ing).

12

• Instead, addNewDefs has to create trees (mostly DefDefs but some ValDefs
too) for the symbols added by preTransform, i.e. addNewDefs adds terms
to templates of iface-facets and composite classes.

Saying that “addNewDefs appends terms” is an oversimplification, because
the template’s stats may already contain abstract defs that should be replaced
(for example, TODO). Therefore, a tree from the original stats stays only if no
signature-equivalent term was created by addNewDefs:

/** Add ‘newdefs‘ to ‘stats‘, removing any abstract method definitions

* in ‘stats‘ that are matched by some symbol defined in ‘newDefs‘.

*/

def add(stats: List[Tree], newDefs: List[Tree]) = {

The utility method above receives almost all concrete methods there’s to
add, except trees for super-accessors. In one more pass, completeSuperAccessor
is used to replace their abstract counterparts, and that’s the new body of the
template:

stats1 = add(stats1, newDefs.toList)

if (!clazz.isTrait) stats1 = stats1 map completeSuperAccessor

stats1

5.5.1 Trees for interface facets

Just an abstract DefDef is added:

for (sym <- clazz.info.decls) {

if (sym hasFlag MIXEDIN) {

if (clazz hasFlag lateINTERFACE) {

// if current class is a trait interface, add an abstract method for accessor ‘sym‘

addDefDef(sym, vparamss => EmptyTree)

5.5.2 Trees for composites: Accessors

These notes do not cover mixing-in of lazy values, other than saying that it’s
done here.

TODO

5.5.3 Trees for composites: Modules

else if (sym.isModule && !(sym hasFlag LIFTED | BRIDGE)) {

// add modules

val vdef = gen.mkModuleVarDef(sym)

addDef(position(sym), vdef)

val rhs = gen.newModule(sym, vdef.symbol.tpe)

val assignAndRet = gen.mkAssignAndReturn(vdef.symbol, rhs)

val attrThis = gen.mkAttributedThis(clazz)

val rhs1 = mkInnerClassAccessorDoubleChecked(attrThis, assignAndRet)

addDef(position(sym), DefDef(sym, rhs1))

}

13

5.5.4 Trees for composites: Fields

else if (!sym.isMethod) {

// add fields

addDef(position(sym), ValDef(sym))

}

5.5.5 Trees for composites: Superaccessors

else if (sym.isSuperAccessor) {

// add superaccessors

addDefDef(sym, vparams => EmptyTree)

}

As shown in the introduction of Sec. 5.5, the bodies of super-accessors are
completed just before returning from addNewDefs():

stats1 = add(stats1, newDefs.toList)

if (!clazz.isTrait) stats1 = stats1 map completeSuperAccessor

stats1

5.5.6 Trees for composites: Forwarders

else {

// add forwarders

assert(sym.alias != NoSymbol, sym)

addDefDef(sym, vparams =>

Apply(staticRef(sym.alias), gen.mkAttributedThis(clazz) :: (vparams map Ident)))

}

14

	Overview
	A note on terminlogy
	Input shapes
	What used to be non-interface traits
	What composed-classes will look like

	Output shapes
	End-to-end transformation

	At current phase (``preTransform'')
	Type rewriting for interface facets: Adding symbols for accessors to composite-owned fields
	Type rewriting for composites (1 of 2): Completing support for interface facets
	Type rewriting for composites (2 of 2): Adding symbols for forwarders
	Term rewriting (1 of 2): Implementation classes
	Term rewriting (2 of 2): The rest

	AST changes so far: a checklist
	transformInfo
	At next phase (``postTransform'')
	Super-refs
	When in implementation-module, detour This to current self-param
	Accesses to composite-owned fields over self-param
	Callsites re-targeted to impl-module-methods
	Appending term trees to interface facets and composites
	Trees for interface facets
	Trees for composites: Accessors
	Trees for composites: Modules
	Trees for composites: Fields
	Trees for composites: Superaccessors
	Trees for composites: Forwarders

