
ICode inlining

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

February 20th, 2012

Abstract

The inlining analysis [1, §3.3.1] inspects certain callsites at compile time,
checking whether the pair (static-type-of-receiver, callee-signature) uniquely
determines a concrete method (the concrete method that will be dis-
patched at runtime). If so, further checks are performed (regarding e.g. re-
sulting code size) before proceeding to insert the callee’s ICode instruc-
tions at the callsite. These notes describe implementation aspects of this
optimization.

phase name id description

---------- -- -----------

parser 1 parse source into ASTs, perform simple desugaring

namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects

typer 4 the meat and potatoes: type the trees

superaccessors 5 add super accessors in traits and nested classes

pickler 6 serialize symbol tables

refchecks 7 reference/override checking, translate nested objects

liftcode 8 reify trees

uncurry 9 uncurry, translate function values to anonymous classes

tailcalls 10 replace tail calls by jumps

specialize 11 @specialized-driven class and method specialization

explicitouter 12 this refs to outer pointers, translate patterns

erasure 13 erase types, add interfaces for traits

lazyvals 14 allocate bitmaps, translate lazy vals into lazified defs

lambdalift 15 move nested functions to top level

constructors 16 move field definitions into constructors

flatten 17 eliminate inner classes

mixin 18 mixin composition

cleanup 19 platform-specific cleanups, generate reflective calls

icode 20 generate portable intermediate code

/*---*/

inliner 21 optimization: do inlining

/*---*/

inlineExceptionHandlers 22 optimization: inline exception handlers

closelim 23 optimization: eliminate uncalled closures

dce 24 optimization: eliminate dead code

jvm 25 generate JVM bytecode

terminal 26 The last phase in the compiler chain

1

http://lamp.epfl.ch/~magarcia

Contents

1 Overview 3

2 What to do with this callsite? (“analyzeInc()”) 4
2.1 Lookup of the unique callee-symbol to dispatch (“lookupImplFor()”) 4
2.2 Additional requisites for external methods (“shouldLoadImplFor()”) 4
2.3 And now that ICode is available: more requisites (“isCandidate”,

“isStampedForInlining”, “isSafeToInline”) 5

3 Inserting the callee’s instructions (“CallerCalleeInfo.doInline()”) 6

4 Parsing the callee’s instructions (“ICodeReader”) 7
4.1 LinearCode.resolveDups() . 8
4.2 LinearCode.resolveNEWs() . 8

5 The New Inlining Algorithm (except that, it has a lot in com-
mon with the old one) 9

A Where does time go? 10

B Suggestions to improve performance 11
B.1 Callee TFA (1 of 2): Caching of TFA for external methods . . . 11

C Clarification needed 13
C.1 Questions . 13
C.2 Are these bugs? . 13
C.3 How to learn more about the inliner 13

2

1 Overview

The inliner phase [1, §3.3.1] iterates over all IClass-es being compiled, skip-
ping some methods (constructors, abstract methods, bridge methods, and those
annotated with @inline) whose bodies won’t be inspected:

def analyzeClass(cls: IClass): Unit = {

if (settings.inline.value) {

this.currentIClazz = cls

for (imethod <- cls.methods;

if !imethod.symbol.isConstructor;

if imethod.code != null;

if !hasInline(imethod.symbol);

if !imethod.symbol.isBridge) {

analyzeMethod(imethod)

}

}

}

In turn, analyzeMethod() goes over the BasicBlocks of “the caller” look-
ing for inlining opportunities in the form of CALL METHOD instructions (which
may target methods hosted in a library or being compiled in the same compiler
run). Upon inlining, the current basic block is abandoned and iteration con-
tinues with the next basic block. Provided inlining occurred, the caller’s body
itself may be iterated more than once (retry variable), each time based on a
new type-flow analysis providing a type-stack at the start of each basic block
(afterwards, tfa.interpret(currTypeStack, instr) gives an updated post-
instruction type-stack). Why a new type-flow analysis? For one, inlining adds
at least two new basic blocks (Sec. 3). Additionally, more precise types might
be computed with the inlined instructions in place.

do {

retry = false

tfa init m

tfa.run

for(bb <- caller.linearized) {

info = tfa in bb

var bbUpdated = false

for (i <- bb; if !bbUpdated) {

i match {

// Dynamic == normal invocations

// Static(true) == calls to private members

case CALL_METHOD(msym, Dynamic | Static(true))

if !msym.isConstructor && !hasNoInline(msym) =>

bbUpdated = analyzeInc(msym, i, bb)

case _ => ()

}

if(!bbUpdated) info = tfa.interpret(info, i);

}

}

} while (retry && count < MAX_INLINE_RETRY)

Before returning, analyzeMethod() glues together basic blocks as per:

/** Merge together blocks that have a single successor which has a

* single predecessor. Exception handlers are taken into account (they

* might force to break a block of straight line code like that).

* This method should be most effective after heavy inlining.

3

*/

def normalize(): Unit = if (this.code ne null) { . . .

2 What to do with this callsite? (“analyzeInc()”)

There are two aspects to the operation of:

def analyzeInc(calleeSym: Symbol, callsite: CALL_METHOD, bb: BasicBlock): Boolean

First, deciding whether inlining should take place (Sec. 2) and if so, clearing
and populating again the basic block’s instructions (Sec. 3) where the callsite
occurs. In the latter case, true is returned (and only then).

2.1 Lookup of the unique callee-symbol to dispatch (“lookupImplFor()”)

A precondition for callee inlining is availability of ICode for it, i.e. availability
of the concrete method body that would be dispatched at runtime. Therefore,
such IMethod can be looked up provided that the pair (static-type-of-receiver,
callee-signature) uniquely determines a concrete method. The necessary and
sufficient condition for that is a disjunction:

receiverClazz.isEffectivelyFinal || calleeSym.isEffectivelyFinal

(where receiverClazz was provided by type-flow analysis). In the former case,
the (final) receiverClazz may itself lack an implementation for calleeSym, thus
requiring walking up the super-class hierarchy to find the one being inherited.
The logic in charge of this lookup is contained in lookupImplFor():

/** Look up implementation of method ’sym in ’clazz’.

*/

def lookupImplFor(sym: Symbol, clazz: Symbol): Symbol = {

// TODO:

// verify that clazz.superClass is equivalent here to

// clazz.tpe.parents(0).typeSymbol (.tpe vs .info)

. . .

TODO OPEN: Methods defined in traits are not inlined,

\url{https://issues.scala-lang.org/browse/SI-4767}

2.2 Additional requisites for external methods (“shouldLoadImplFor()”)

After the steps in Sec. 2.2 the concreteMethod-symbol has been found that safely
predicts the outcome of runtime method dispatch. However, it might point to a
definition in an external library. In such cases, the guard in shouldLoadImplFor()

has “veto power” over the inlining decision (to recap, no ICode available means
no inlining).

In short, a callee “living in an external library” will be loaded (Sec. 4) only
if:

4

• annotated with @inline (this is the only way for an external, user-defined
method to be considered for inlining),

• otherwise it lives in scala.Predef, or its class lives in scala.runtime, or it
is one of the few “monadic” methods (foreach, filter, withFilter, map,
flatMap) and is also final.

/** Should method ’sym’ being called in ’receiver’ be loaded from disk? */

def shouldLoadImplFor(calleeSym: Symbol, receiverClazz: Symbol): Boolean = {

def alwaysLoad =

(receiverClazz.enclosingPackage == RuntimePackage)

|| (receiverClazz == PredefModule.moduleClass)

def loadCondition =

calleeSym.isEffectivelyFinal

&& isMonadicMethod(calleeSym)

&& isHigherOrderMethod(calleeSym)

hasInline(sym) || alwaysLoad || loadCondition

}

private def isMonadicMethod(sym: Symbol) = {

val (origName, _, _) = nme.splitSpecializedName(sym.name)

origName match {

case nme.foreach | nme.filter | nme.withFilter | nme.map | nme.flatMap => true

case _ => false

}

}

private def isHigherOrderMethod(sym: Symbol) =

sym.isMethod && atPhase(currentRun.erasurePhase.prev)(sym.info.paramTypes exists isFunctionType)

2.3 And now that ICode is available: more requisites (“isCandidate”,
“isStampedForInlining”, “isSafeToInline”)

Whether externally loaded or compiled in this run, the IMethods for caller and
callee are subject to further checks:

1. non-overridability of the callee, where “callee” was looked-up as per Sec. 2.2.
Non-overridability is given by any of

def isCandidate = (

isClosureClass(receiverClazz) || concreteMethod.isEffectivelyFinal || receiverClazz.isEffectivelyFinal

)

2. caller and callee aren’t one and the same, the scoring heuristics give green
light, and the callee’s instructions don’t make inlining unsafe (this last
condition, isSafeToInline(), is expanded below).

def isStampedForInlining(stack: TypeStack) =

!sameSymbols &&

inc.hasCode && /*- ie. the callee’s IMethod has non-null ‘code‘ field.*/

shouldInline &&

isSafeToInline(stack)

private def sameSymbols = caller.sym == inc.sym

5

private def neverInline = caller.isBridge || !inc.hasCode || inc.noinline

private def alwaysInline = inc.inline

/** Decide whether to inline or not. Heuristics:

* - it’s bad to make the caller larger (> SMALL_METHOD_SIZE) if it was small

* - it’s bad to inline large methods

* - it’s good to inline higher order functions

* - it’s good to inline closures functions.

* - it’s bad (useless) to inline inside bridge methods

*/

def shouldInline: Boolean = !neverInline && (alwaysInline || {

/*- scoring-based heuristics */

. . .

}

The vetoing conditions that exclusively depend on the callee’s instructions
are encapsulated in isSafeToInline():

/** A method is safe to inline when:

* - it does not contain calls to private methods when called from another class

* - it is not inlined into a position with non-empty stack,

* while having a top-level finalizer (see liftedTry problem)

* - it is not recursive

* Note:

* - synthetic private members are made public in this pass.

*/

def isSafeToInline(stack: TypeStack): Boolean = {

. . .

3 Inserting the callee’s instructions (“CallerCalleeInfo.doInline()”)

/** Inline ’inc’ into ’caller’ at the given block and instruction.

*/

def doInline(block: BasicBlock, instr: CALL_METHOD)

At this point, the callee goes by the name of “inc”. Keeping in mind that
it has a single entry point, the inlining mechanics are:

1. make room for the CFG of the callee, by leaving in the basic block con-
taining the callsite (“block”) only those instructions until the callsite.

2. splice a copy of the callee’s CFG as a successor of the current block,

3. the instructions originally following the inlined callsite go into a new block
(“afterBlock”) which also becomes the successor of some spliced blocks
after reformulating the callee’s RETURN statements:

case RETURN(_) => JUMP(afterBlock)

There are more moving parts, but the above already conveys the essentials.

6

4 Parsing the callee’s instructions (“ICodeReader”)

The unit of loading is an IClass. Once parsed from bytecode, they are tracked
separately (in icodes.loaded) from those built by GenICode (in icodes.classes):

/** The icode of the given class, if available */

def icode(sym: Symbol): Option[IClass] = (classes get sym) orElse (loaded get sym)

/** Load bytecode for given symbol. */

def load(sym: Symbol) {

try {

val (c1, c2) = icodeReader.readClass(sym)

assert(c1.symbol == sym || c2.symbol == sym,

"c1.symbol = %s, c2.symbol = %s, sym = %s".format(c1.symbol, c2.symbol, sym))

loaded += (c1.symbol -> c1)

loaded += (c2.symbol -> c2)

} catch {

case e: Throwable => // possible exceptions are MissingRequirementError, IOException and TypeError -> no better common supertype

log("Failed to load %s. [%s]".format(sym.fullName, e.getMessage))

if (settings.debug.value)

e.printStackTrace

}

}

TODO Question:

"The unit of loading is an IClass".

Does this mean that failure to parse any single method

(whether candidate for inlining or not, whether invoked from an inlining candidate or not)

renders all methods in that IClass non-available for inlining?

TODO Gather stats on how often this happens.

Some highlights:

1. Exception entries aren’t parsed, thus it wouldn’t be possible, say, to de-
compile try-catch-finally from the parsed ICode:

val exceptionEntries = in.nextChar.toInt

var i = 0

while (i < exceptionEntries) {

// skip start end PC

in.skip(4)

// read the handler PC

code.jmpTargets += in.nextChar

// skip the exception type

in.skip(2)

i += 1

}

skipAttributes()

2. After parsing all instructions, a customized type-flow analysis and a reaching-
defs analysis may be needed (Sec. 4.1 and Sec. 4.2):

if (code.containsDUPX)

code.resolveDups()

7

if (code.containsNEW)

code.resolveNEWs()

4.1 LinearCode.resolveDups()

GenJVM does not emit them, but the stack-manipulation instructions DUP X1,
DUP X2, DUP2 X1, and DUP2 X2 may be found while parsing bytecode.

They are reformulated by resolveDups() into a sequence of equivalent in-
structions, using temporary locals instead.

The CIL instructions set deliberately avoids those instructions, as well as
swap (“swaps two top words on the stack (note that value1 and value2 must not
be double or long)”.

• JVM instructions:
http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

• Differences between JVM and CLR:
http://www.daimi.au.dk/~beta/ooli/Compare.html

4.2 LinearCode.resolveNEWs()

In Scala ASTs, the invocation of a constructor, i.e.

case Apply(fun @ Select(New(tpt), nme.CONSTRUCTOR), args)

is lowered into a several ICode instructions (push reference to new object, du-
plicate it, load arguments, call instance initializer). Quoting from GenICode:

val nw = NEW(rt)

ctx.bb.emit(nw, tree.pos)

ctx.bb.emit(DUP(generatedType))

val ctx1 = genLoadArguments(args, ctor.info.paramTypes, ctx)

val init = CALL_METHOD(ctor, Static(true))

nw.init = init /*- this field will be needed by Inliner */

ctx1.bb.emit(init, tree.pos)

ctx1

When reading back ICode, resolveNEWs() tries to recognize which CALL METHOD

correspondes to each NEW instruction, otherwise dumpMethodAndAbort().
In other words, ICode follows the JVM pattern for object-creation:

/** Creating objects works differently on .NET. On the JVM

* - NEW(type) => reference on Stack

* - DUP, load arguments, CALL_METHOD(constructor)

*

* On .NET, the NEW and DUP are ignored, because the NewObj opcode does their job instead.

* - load arguments

* - NewObj(constructor) => reference on stack

8

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings
http://www.daimi.au.dk/~beta/ooli/Compare.html

5 The New Inlining Algorithm (except that, it
has a lot in common with the old one)

Just in time for Scala 2.10, the inlining algorithm was refactored1, achieving a
significant speedup. In order to understand the new algorithm, let’s take stock of
the information necessary and sufficient for inlining. To recap, basic blocks are
iterated to find callsites whose (static-type-of-receiver, callee-signature) qualify
as candidates for a deeper check via analyzeInc(). The new algorithm col-
lects that information as a side-effect of type-flow analysis (TFA). This addi-
tional work is performed in a subclass of MethodTFA that is used only by Inliner

(MTFAGrowable is the subclass in question).
The above by itself does not cut down on TFA effort. Before getting there,

let’s see what inlining does to the caller’s CFG, which will be the key to avoiding
computing afresh a full TFA. Instead, we will repair the existing solution.

• The mechanics of inlining (Sec. 3) modify in-place the caller’s CFG by
(a) trimming some instructions from the block where the callsite was
hosted; (b) splicing in a number of new blocks; and (c) connecting what
used to be exit instructions in the callee by jumps to the “afterBlock”,
another new block, that contains the instructions trimmed from the origi-
nal basic block. All in all, a call instruction is replaced with a single-entry
single-exit CFG that is embedded in the caller’s CFG.

• In terms of an iterative dataflow analysis, nodes affected by (a) have a stale
lattice element at block exit (“out-flow”); while nodes added by (b) and (c),
being new, have no lattice elements whatsoever (neither on block entry
nor block exit).

Given the division of labor between Inliner (in charge of updating in-place
the caller’s CFG) and MTFAGrowable (TFA computation) all that doInline() can
do about (a), (b), and (c) above is conveying that information for the TFA to be
repaired (this communication occurs by invoking MTFAGrowable.reinit()). With
that information on hand, TFA repair should focus on blocks reachable from
blocks having stale out-flows. This includes all new blocks, be they inlined or
“afterBlock”. That’s why we add all blocks with stale out-flows to the TFA’s
worklist (only). In due course, lattice elements will be computed where needed
(thus bringing up to date, or repairing, the TFA solution).

This brings us back to the TFA analysis. It does more than pushing and
popping blocks to the working list, applying the transfer function in between. It
does more in order to do less. You see, as the type of a receiver is lub-bed from
that of block predecessors, we might notice the (static-type-of-receiver, callee-
signature) does not qualify anymore as candidate for inlining. That means we
can remove it from a “watchlist” (a set of CALL METHOD instructions), that is
useful in connection with another set (of basic blocks, “relevantBBs”). Useful
because they allow us to quit applying the transfer function whenever the TFA
has reached the perimeter of the CFG subgraph of interest. Details? There are
some hefty source comments in Inliners.scala and TypeFlowAnalysis.scala.

1https://github.com/scala/scala/commit/6255c482572441e729a59e448adfa12d338752bc

9

https://github.com/scala/scala/commit/6255c482572441e729a59e448adfa12d338752bc

Listing 1: Sec. A

*** Cumulative statistics at phase inliner

ms type-flow-analysis : 140668

ms copy-propagation : 0

ms liveness-analysis : 0

ms reachingDefinitions : 0

*** Cumulative statistics at phase inlineExceptionHandlers

ms type-flow-analysis : 147973

ms copy-propagation : 0

ms liveness-analysis : 0

ms reachingDefinitions : 0

*** Cumulative statistics at phase closelim

ms type-flow-analysis : 147973

ms copy-propagation : 2021

ms liveness-analysis : 750

ms reachingDefinitions : 750

*** Cumulative statistics at phase dce

ms type-flow-analysis : 147973

ms copy-propagation : 2021

ms liveness-analysis : 1738

ms reachingDefinitions : 1738

A Where does time go?

The measurement “ms type-flow-analysis” includes only the time spent in
MethodTFA.run(). A more complete picture can be gained by including MethodTFA.init().
After adding other timers for the other dfa’s (CopyAnalysis, LivenessAnalysis,
ReachingDefinitionsAnalysis) we can see for the example of compiling the com-
piler (see also Listing 1):

[inliner in 231708ms] // i.e. 68% of the compiler run

[inlineExceptionHandlers in 7753ms] // 2%

[closelim in 4043ms] // 1%

[dce in 17837ms] // 5%

. . .

[total in 336324ms]

Focusing on the inliner phase, a useful distinction is between:

• External methods that are inlined in methods being compiled, Listing 3

• Methods being compiled that were inlined in methods being compiled,
Listing 2

Parsing bytecode is actually not that expensive (as compared to computing
type-flows). Moreover, about ten methods (Listing 3) account for the vast
majority of this kind of inlining (in the example of compiling the compiler).

Regarding “‘Methods being compiled that were inlined in methods being
compiled” (Listing 2), the times apply() of an anon-closure were inlined is shown
below. Any optimization here would help a lot.

10

Listing 2: Sec. A

Methods being compiled that were inlined in methods being compiled

times (%) symbol

----- ------- ------

214 (27.4%) scala.tools.nsc.Global.debuglog

174 (22.3%) scala.tools.nsc.Global.log

111 (14.2%) scala.reflect.internal.SymbolTable.atPhase

43 (5.5%) scala.tools.nsc.interactive.Global.debugLog

39 (5.0%) scala.reflect.internal.Symbols$Symbol.setFlag

35 (4.5%) scala.reflect.internal.Symbols$Symbol.fullName

22 (2.8%) scala.tools.nsc.interpreter.repldbg

16 (2.0%) scala.reflect.internal.Symbols$Symbol.isOverloaded

15 (1.9%) scala.tools.nsc.interactive.RefinedBuildManager$$anonfun$invalidated$2.scala$tools$nsc$interactive$RefinedBuildManager$$anonfun$$$outer

14 (1.8%) scala.tools.nsc.ast.TreeDSL$CODE.mkTreeMethods

14 (1.8%) scala.tools.nsc.typechecker.Namers$Namer$$anonfun$addDefaultGetters$2.scala$tools$nsc$typechecker$Namers$Namer$$anonfun$$$outer

14 (1.8%) scala.tools.nsc.typechecker.Typers$Typer.printInference

13 (1.7%) scala.tools.nsc.typechecker.Namers$Namer$$anonfun$addDefaultGetters$2$$anonfun$apply$13.scala$tools$nsc$typechecker$Namers$Namer$$anonfun$$anonfun$$$outer

13 (1.7%) scala.tools.nsc.typechecker.Typers$Typer.printTyping

12 (1.5%) scala.tools.nsc.backend.icode.GenICode.scala$tools$nsc$backend$icode$GenICode$$debugassert

11 (1.4%) scala.tools.nsc.ast.TreeDSL$CODE.REF

11 (1.4%) scala.tools.nsc.interactive.Global.informIDE

10 (1.3%) scala.tools.nsc.ast.parser.Parsers$Parser.commaSeparated

Other inlinings (fewer than ten times each method): 1489

Times that getters/setters were inlined: 374

Number of anon-closure’s apply’s that were inlined: 2584, of which 292 were $sp.

Number of anon-closure’s apply’s that were inlined: 2584, of which 292 were $sp.

B Suggestions to improve performance

B.1 Callee TFA (1 of 2): Caching of TFA for external
methods

The TFA of an external callee doesn’t change during compilation. But as of
now, it will be re-computed as many times as that method is inlined. Better to
cache it, right?

A similar argument applies to the TFA of the caller. If the most recent TFA
is kept in a cache, there’s no need to re-compute it (will be needed when that
method plays the role of caller or callee in an inlining attempt).

Sidenotes:

1. After ICode has been loaded for the callee, a customized MethodTFA is
initialized and run in some cases (as part of resolveDups(), Sec. 4.1).
Afterwards it is discarded.

TODO

No need to discard it. The override of interpret() replaces DUPX opcodes

with functionally equivalent ICode STORE and LOAD instructions.

That does not change the type-stack at BasicBlock boundaries.

Anyway, DUPX are so infrequent that we won’t gain much

by not discarding the MethodTFA instance.

11

Listing 3: Sec. A

External methods that were inlined in methods being compiled

times (%) symbol

----- ------- ------

264 (16.5%) scala.Predef$ArrowAssoc.$minus$greater

258 (16.1%) scala.Predef.assert

132 (8.2%) scala.Predef.augmentString

128 (8.0%) scala.Option.getOrElse

97 (6.0%) scala.Option.map

83 (5.2%) scala.Predef.println

83 (5.2%) scala.runtime.ScalaRunTime.inlinedEquals

75 (4.7%) scala.LowPriorityImplicits.intWrapper

68 (4.2%) scala.collection.immutable.Range.foreachmVcsp

67 (4.2%) scala.Option.foreach

63 (3.9%) scala.runtime.RichInt.until

62 (3.9%) scala.collection.immutable.Range.apply

43 (2.7%) scala.Option.flatMap

37 (2.3%) scala.Predef.any2ArrowAssoc

30 (1.9%) scala.Predef.any2stringadd

27 (1.7%) scala.Predef.refArrayOps

22 (1.4%) scala.Option.orElse

19 (1.2%) scala.Option.exists

16 (1.0%) scala.runtime.ScalaRunTime.hash

15 (0.9%) scala.Option.filter

15 (0.9%) scala.collection.immutable.Range.foreach

Other inlinings (fewer than ten times each method): 64

Times that getters/setters were inlined: 0

Number of anon-closure’s apply’s that were inlined: 0, of which 0 were $sp.

The invocations

if (code.containsDUPX)

code.resolveDups()

if (code.containsNEW)

code.resolveNEWs()

are currently being done as part of parseBytecode() (see also Sec. 4.2).
In case the method fails the isSafeToInline(stack) test, that work would
have been in vain. Perhaps some isSafeToInline(stack) conditions can
be evaluated before finishing polishing the parsed method.

TODO

Actually, resolveDups() and resolveNEWs() can be moved from LinearCode to IMethod

(their input is just the IMethod) so that they can be invoked only after

successful testing for inlining-safety.

Another place for those methods could be Inliner.

2. BTW, during doInline() the type-flow analysis of the callee is needed
only to know how many DROP instructions to emit as part of replacing a
RETURN(UNIT) or a RETURN(kind) (granted, except that DROP takes as argu-
ment the TypeKind of the stack top).

12

C Clarification needed

C.1 Questions

TODO Question about availability of ICode for receiverMethod,

Why is that determined in two different ways?

Way 1:

def isAvailable = icodes available concreteMethod.enclClass

i.e. the enclClass of the unique callee-symbol is deemed to hold the IMethod whose code will be inlined.

Way 2:

def lookupIMethod(meth: Symbol, receiver: Symbol): Option[IMethod] = {

def tryParent(sym: Symbol) = icodes icode sym flatMap (_ lookupMethod meth)

receiver.info.baseClasses.iterator map tryParent find (_.isDefined) flatten

}

the receiverClazz is used as starting point (which takes longer,

and hopefully leads to the same result as Way 1).

C.2 Are these bugs?

TODO Looks like neither ICodeReader nor ClassfileParser are setting the parsed IMethod’s exh field.

Why do we have

// add exception handlers of the callee

caller addHandlers (inc.handlers map translateExh)

in Inliners?

ICodeReader doesn’t set IMethod.recursive after parseByteCode().

Therefore the vetoing condition about not being recursive in isSafeToInline()

applies in effect only to callees being compiled in this run.

Can this be a problem? Are externally-defined, recursive callees, vetoed in some other way?

In ICodeReader, the first index of a param list depends on whether the method is static or not:

var idx = if (method.isStatic) 0 else 1

ie. <MethodSymbol>.isStaticMember is queried.

However, in some cases (e.g. compiling LongMap) there is a discrepancy between that and

((current_jflags & ch.epfl.lamp.fjbg.JAccessFlags.ACC_STATIC) != 0)

Perhaps related, javaToScalaFlags() doesn’t inspect Java’s ACC_STATIC flag.

Giving the wrong "first index" may later cause checkValidIndex() to fail.

C.3 How to learn more about the inliner

A query for https://issues.scala-lang.org/secure/IssueNavigator!executeAdvanced.
jspa (for example, Figure 1).

project = SI

13

https://issues.scala-lang.org/secure/IssueNavigator!executeAdvanced.jspa
https://issues.scala-lang.org/secure/IssueNavigator!executeAdvanced.jspa

Figure 1: Sec. C.3

AND (summary ~ inlin OR description ~ inlin)

AND issuetype = Bug AND status = Open

References

[1] Iulian Dragos. Compiling Scala for Performance. PhD thesis, Lausanne,
2010. http://lamp.epfl.ch/~dragos/files/dragos-thesis.pdf.

14

http://lamp.epfl.ch/~dragos/files/dragos-thesis.pdf

	Overview
	What to do with this callsite? (``analyzeInc()'')
	Lookup of the unique callee-symbol to dispatch (``lookupImplFor()'')
	Additional requisites for external methods (``shouldLoadImplFor()'')
	And now that ICode is available: more requisites (``isCandidate'', ``isStampedForInlining'', ``isSafeToInline'')

	Inserting the callee's instructions (``CallerCalleeInfo.doInline()'')
	Parsing the callee's instructions (``ICodeReader'')
	LinearCode.resolveDups()
	LinearCode.resolveNEWs()

	The New Inlining Algorithm (except that, it has a lot in common with the old one)
	Where does time go?
	Suggestions to improve performance
	Callee TFA (1 of 2): Caching of TFA for external methods

	Clarification needed
	Questions
	Are these bugs?
	How to learn more about the inliner

