
Dataflow Analyses on ICode

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

November 28th, 2011

Abstract

These notes provide an introduction to the DFA (data-flow analysis) in-
frastructure for ICode, as used by the ICode optimization phases [1] in
the Scala compiler.

Associated to each optimization pass there’s a dataflow analysis:

• for inliner [2] and inlineExceptionHandlers [3] it’s MethodTFA,

• for ClosureElimination [4] it’s ReachingDefinitions,

• for DeadCodeElimination [4] it’s CopyAnalysis, and

• for the peephole pass [4] it’s LivenessAnalysis.

The write-ups referenced above cover the role of these analyses in the
context of each optimization.

Contents

1 Overview 2
1.1 An example of typeflow analysis on basic blocks 2
1.2 An example of reaching definitions 5

2 ReachingDefinitionsAnalysis 6
2.1 Lattice . 6
2.2 Initialization . 7
2.3 Block-level and instruction-level transfer functions 7

3 CopyAnalysis 8
3.1 Suggestions to improve performance 8
3.2 Questions . 8
3.3 Ideas for the future . 9

4 LivenessAnalysis 9

1

http://lamp.epfl.ch/~magarcia

Figure 1: Dataflow analyses for ICode

Listing 1: typeStackLattice

/** The lattice of type stacks. It is a straightforward extension of

* the type lattice (lub is pairwise lub of the list elements).

*/

object typeStackLattice extends CompleteLattice {

import icodes._

type Elem = TypeStack

override val top = new TypeStack

override val bottom = new TypeStack

val exceptionHandlerStack: TypeStack = new TypeStack(List(REFERENCE(definitions.AnyRefClass)))

def lub2(exceptional: Boolean)(s1: TypeStack, s2: TypeStack) = {

if (s1 eq bottom) s2

else if (s2 eq bottom) s1

else if ((s1 eq exceptionHandlerStack) || (s2 eq exceptionHandlerStack))

Predef.error("merging with exhan stack")

else {

new TypeStack((s1.types, s2.types).zipped map icodes.lub)

}

}

}

1 Overview

Four analyses are provided out-of-the-box for ICode (Figure 1) and more can be
defined by choosing a lattice and a transfer function. A fix-point will be searched
by an iterative approach [5, §8.4] (backward or forward, depending on whether
“backwardAnalysis(blockTransfer)” or “forwardAnalysis(blockTransfer)” is in-
voked in the run() override).

1.1 An example of typeflow analysis on basic blocks

Out-of-the-box, a TypeStack lattice is available (Listing 1). The level of granu-
larity considered by the MethodTFA analysis is not Instruction but BasicBlock.
In other words:

• trait DataFlowAnalysis[L <: CompleteLattice]

requires a type P <: ProgramPoint[P], and

• MethodTFA considers type P = BasicBlock

The contract of ProgramPoint is:

2

Listing 2: jimpleTest in Scala

object jimpleTest {

class A {}

class B extends A {}

class C extends A {}

def main(args : Array[String]) {

val x = if (java.lang.System.currentTimeMillis() == 0)

new B

else

new C

}

}

trait ProgramPoint[a <: ProgramPoint[a]] {

def predecessors: List[a]

def successors: List[a]

def exceptionHandlerStart: Boolean

}

Typeflow one ICode instruction at a time:

/** Abstract interpretation for one instruction. */

def interpret(in: typeFlowLattice.Elem, i: Instruction): typeFlowLattice.Elem

The example in Listing 2 computes two values (of different types, in two
different control-flow paths) for the same variable. The ICode output (obtained
via -Xprint:icode) is depicted in Listing 3.

Both of blocks 2 and 3 have block 4 as successor, which expects a typestack
consisting of REFERENCE(jimpleTest.A) on entry, while the outgoing typestacks of
2 and 3 are of the form REFERENCE(jimpleTest.B) and REFERENCE(jimpleTest.C)

resp.
Without writing a compiler plugin, one can see MethodTFA in action by de-

bugging the compiler in a run with -Yinline. That activates analyzeMethod in
Inliners which shows the steps to run the typestackflow analysis:

val tfa = new analysis.MethodTFA();

tfa.init(m)

tfa.run

for (bb <- linearizer.linearize(m)) {

// check tfa.in(bb) and tfa.out(bb)

// for (i <- bb) iterates the instructions in the basic block bb,

// info = tfa.interpret(info, i) can be invoked

}

For the typeFlowLattice, its elements are of the form IState[VarBinding, icodes.TypeStack].

• The first type param stands for an environment (where each binding asso-
ciates a local var with its TypeKind), except that a VarBinding map returns
bottom (i.e., typeLattice.bottom not typeFlowLattice.bottom) for vars not

3

Listing 3: jimpleTest in ICode, Sec. 1.1

object jimpleTest extends java.lang.Object, ScalaObject {

// fields:

// methods

def <init>(): object jimpleTest { . . . }

Exception handlers:

def main(args: Array[java.lang.String] (ARRAY[REFERENCE(java.lang.String)])): Unit {

locals: value args, value x

startBlock: 1

blocks: [1,2,3,4]

1:

8 CALL_METHOD java.lang.Systemjava.lang.System.currentTimeMillis (static-class)

8 CONSTANT (Constant(0))

8 CJUMP (LONG)EQ ? 2 : 3

2:

9 NEW REFERENCE(jimpleTest$B)

9 DUP

9 CALL_METHOD jimpleTest$BjimpleTest$B.<init> (static-instance)

9 JUMP 4

3:

11 NEW REFERENCE(jimpleTest$C)

11 DUP

11 CALL_METHOD jimpleTest$CjimpleTest$C.<init> (static-instance)

8 JUMP 4

4:

8 STORE_LOCAL value x

8 SCOPE_ENTER value x

8 SCOPE_EXIT value x

8 RETURN (UNIT)

}

Exception handlers:

}

yet in the map.

• The second type param (TypeStack) is just a stack of TypeKind elements.

/** A map which returns the bottom type for unfound elements */

class VarBinding extends mutable.HashMap[icodes.Local, icodes.TypeKind] {

override def get(l: icodes.Local) = super.get(l) match {

case Some(t) => Some(t)

case None => Some(typeLattice.bottom)

}

def this(o: VarBinding) = {

this()

this ++= o

}

}

4

Listing 4: Sec. 1.2

method: InterfaceDemo.hardest

block: 1

type stack : []

no reaching-defs on the empty stack

0| CALL_METHOD java.lang.Systemjava.lang.System.currentTimeMillis (static-class)

type stack : [LONG]

reaching the slot at depth: 0

def: /CALL_METHOD java.lang.Systemjava.lang.System.currentTimeMillis (static-class) in block 1\

1| CONSTANT (Constant(0))

type stack : [LONG,LONG]

reaching the slot at depth: 0

def: /CONSTANT (Constant(0)) in block 1\

reaching the slot at depth: 1

def: /CALL_METHOD java.lang.Systemjava.lang.System.currentTimeMillis (static-class) in block 1\

2| CJUMP (LONG)EQ ? 2 : 3

last type stack : []

no reaching-defs on the empty stack

1.2 An example of reaching definitions

ReachingDefinitionsAnalysis gives for each stack slot the instruction(s) that
have written the slot. For example, the following instructions:

method: InterfaceDemo.hardest

block: 1

type stack : []

0| CALL_METHOD java.lang.Systemjava.lang.System.currentTimeMillis (static-class)

type stack : [LONG]

1| CONSTANT (Constant(0))

type stack : [LONG,LONG]

2| CJUMP (LONG)EQ ? 2 : 3

last type stack : []

make the traversal of reaching-defs report the first instruction twice (until its
stack slot gets popped). That instruction appears in Listing 4 (as definition)
first with depth 0 (i.e., the value is on top) and after the push by CONSTANT with
depth 1. The traversal was performed in the “natural” way:

/** Prints as a table the defs reaching instrIdx. */

def makeSenseOfReachingDefs(rdefVars: Set[(Local, BasicBlock, Int)],

rdefStack: List[Set[(BasicBlock, Int)]],

instrIdx: Int) {

if(rdefStack.isEmpty){

scala.Console.println("\t\t\t no reaching-defs on the empty stack")

}

for((slot, depth) <- rdefStack.zipWithIndex){

scala.Console.println("\t\t\t reaching the slot at depth: " + depth)

for((bb, bbidx) <- slot) {

scala.Console.println("\t\t\t\t def: " + where(bb, bbidx))

}

}

def where(b: BasicBlock, i: Int) = "/" + b(i) + " in block " + b + "\\"

}

5

2 ReachingDefinitionsAnalysis

2.1 Lattice

As with all DFAs, it’s best to look first at the lattice that the reaching-def
analysis adopts, as given by rdefLattice.Elem

type Elem = IState[

Set [(Local, BasicBlock, Int)],

List[Set[(BasicBlock, Int)]]

]

• The abstract state of variables is represented as a set of triples, where
different triples may include the same Local. To illustrate, the same in-
formation could be represented as:

– Map [Local, Set[(BasicBlock, Int)]], or

– MultiMap [Local, (BasicBlock, Int)]

• The abstract state of the operand stack includes for each stack position a
set of ICode program locations. List head is stack top.

rdefLattice.lub2() computes the entry abstract stack for an exception handler
somewhat differently as compared to its MethodTFA counterpart. Here’s how
typeFlowLattice.lub2() handles that:

val stack =

if (exceptional) typeStackLattice.exceptionHandlerStack

else typeStackLattice.lub2(exceptional)(a.stack, b.stack)

In contrast, rdefLattice.lub2() does not special-case exception handlers:

if (a.stack.isEmpty) b.stack

else if (b.stack.isEmpty) a.stack

else {

(a.stack, b.stack).zipped map (_ ++ _)

}

Instead, that’s handled via interplay with the instruction-transfer-function:

def interpret(b: BasicBlock, idx: Int, in: lattice.Elem): Elem

where it can clearly be read:

instr match {

case STORE_LOCAL(l1) =>

locals = updateReachingDefinition(b, idx, locals)

stack = stack.drop(instr.consumed)

case LOAD_EXCEPTION(_) => /*- here’s where the abstract-stack for exception handlers */

stack = Nil

case _ =>

stack = stack.drop(instr.consumed)

}

6

TODO

Why ‘‘stack = Nil’’ instead of loading, say,

the set of all instruction-positions of all blocks covered by the handler?

(this information can be grabbed via BasicBlock.method.exh)

Alternatively, rather than all those instructions,

a distinguished representative can be used.

Alternatively, mutable.Map[BasicBlock, mutable.BitSet] may be compact enough.

Also related, in init()

m.exh foreach { e =>

in(e.startBlock) = lattice.IState(new ListSet[Definition], List(new StackPos))

}

2.2 Initialization

Two helper functions iterate over the instructions on each BasicBlock to popu-
late the following block-level summaries:

• gen: last assignments per block
Map[BasicBlock, Set[(Local, BasicBlock, Int)]]

• kill: variables assigned at least once, per block
Map[BasicBlock, Set[Local]]

• drops: how many more elements are popped than pushed
Map[BasicBlock, Int]

• outStack: net growth in the stack contributed by this block
Map[BasicBlock, List[Set[(BasicBlock, Int)]]]

2.3 Block-level and instruction-level transfer functions

In order to compute the abstract state (for local variables and for the operand
stack), the block-level transfer function just looks up info prepared by init()

(Sec. 2.2).

• The abstract state for local variables

– trims previous definitions for those variables assigned in the current
basic block (i.e., “kill(b)”),

– keeps reaching-defs for variables not assigned, and

– includes a more recent reaching-definition for each variable assigned
at least once.

• The abstract stack (on basic block exit) adds on top of the incoming
stack (with its top drops(b) elements chopped off, as they are consumed
in the basic block) the net elements pushed by b (that delta is given by
outStack(b)):

7

private def blockTransfer(b: BasicBlock, in: lattice.Elem): lattice.Elem = {

var locals: ListSet[Definition] = (in.vars filter { case (l, _, _) => !kill(b)(l) }) ++ gen(b)

if (locals eq lattice.bottom.vars) locals = new ListSet[Definition]

IState(locals, outStack(b) ::: in.stack.drop(drops(b)))

}

In other words, unlike its MethodTFA counterpart, ReachingDefinitionsAnalysis.blockTransfer()
does not use the instruction-level transfer function.

Regarding the instruction-level transfer function, it intercepts STORE LOCAL

instructions to update the state of variables, and pops and pushes (instruction-
positions) as given by instr.consumed and instr.produced (except for LOAD EXCEPTION,
Sec. 2.1).

TODO check via assert, in rdefLattice.lub2():

// !!! These stacks are with some frequency not of the same size.

// I can’t reverse engineer the logic well enough to say whether this

// indicates a problem. Even if it doesn’t indicate a problem,

// it’d be nice not to call zip with mismatched sequences because

// it makes it harder to spot the real problems.

3 CopyAnalysis

TODO

3.1 Suggestions to improve performance

The second version below should be faster (it avoids replacing with the same
instruction, thus avoiding touched == true, thus avoiding DFA iterations):

• Original:

case _ =>

bb.replaceInstruction(i, LOAD_LOCAL(info.getAlias(l)))

log("replaced " + i + " with " + info.getAlias(l))

• Alternative:

case _ =>

val al = info.getAlias(l)

if(al ne l) {

bb.replaceInstruction(i, LOAD_LOCAL())

log("replaced " + i + " with " + info.getAlias(l))

}

3.2 Questions

When computing copyLattice.lub2(), two non-bottom stacks a and b are merged
as follows:

8

val resStack =

if (exceptional) exceptionHandlerStack

else {

(a.stack, b.stack).zipped map { (v1, v2) =>

if (v1 == v2) v1 else Unknown

}

}

A merged stack slot is taken to be Unknown unless both merged values (v1
and v2) are the same. However, although unequal, v1 and v2 may still denote
the same source (say, Deref(LocalVar(abc) and Deref(Field(r1, f1)) where in
turn getFieldValue(r1, f1) == Deref(LocalVar(abc)).

Similary when merging the values of locals (ie, when computing resBindings).
In that case the comparison reads v == b.bindings(k)

Apparently the situation above is possible, because when computing the
abstract state, the source value isn’t looked up. For example:

case LOAD_LOCAL(local) =>

out.stack = Deref(LocalVar(local)) :: out.stack

/*- there might have been a binding for ‘local‘ in the ‘in‘ argument

(i.e., in the pre-instruction abstract state).

Similarly for LOAD_FIELD */

TODO

Questions:

(1) should ‘‘source’’ values be added (when available) by interpret()?

(2) if not, can v1 and v2 be canonicalized before comparing for equality when merging them?

Although v1 and v2 refer to accesses in different control-flow paths,

but still their canonicalizations are comparable.

3.3 Ideas for the future

The current definition of “Deref(LocalVar(l))” is not program-point-aware, and
thus the need to turn abstract values in the stack into Unknown after a local is
assigned:

/** Remove all references to this local variable from both stack

* and bindings. It is called when a new assignment destroys

* previous copy-relations.

*/

final def cleanReferencesTo(s: copyLattice.State, target: Location) {

Some ideas from points-to analysis could find their way into a more fine-
grained (yet efficient) representation for abstract values.

4 LivenessAnalysis

LivenessAnalysis is a backward DFA (data-flow analysis) (the only backward-
DFA of those in the compiler).

9

TODO

References

[1] Iulian Dragos. Compiling Scala for Performance. PhD thesis, Lausanne,
2010. http://lamp.epfl.ch/~dragos/files/dragos-thesis.pdf.

[2] Miguel Garcia. ICode inlining, 2011. Notes at The Scala Compiler Cor-
ner. http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/

2011Q4/Inliner.pdf.

[3] Miguel Garcia. InlineExceptionHandlersPhase, 2011. Notes
at The Scala Compiler Corner. http://lamp.epfl.ch/~magarcia/

ScalaCompilerCornerReloaded/2011Q4/InlineExceptHandler.pdf.

[4] Miguel Garcia. ClosureElimination and DeadCodeElimination, 2011.
Notes at The Scala Compiler Corner. http://lamp.epfl.ch/~magarcia/
ScalaCompilerCornerReloaded/2011Q4/ClosureOptimiz.pdf.

[5] Steven S. Muchnick. Advanced Compiler Design and Implementation. Mor-
gan Kaufmann, 1997.

10

http://lamp.epfl.ch/~dragos/files/dragos-thesis.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/Inliner.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/Inliner.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/InlineExceptHandler.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/InlineExceptHandler.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/ClosureOptimiz.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/ClosureOptimiz.pdf

	Overview
	An example of typeflow analysis on basic blocks
	An example of reaching definitions

	ReachingDefinitionsAnalysis
	Lattice
	Initialization
	Block-level and instruction-level transfer functions

	CopyAnalysis
	Suggestions to improve performance
	Questions
	Ideas for the future

	LivenessAnalysis

