
cleanup of references to structural members

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

August 30th, 2011

Abstract

cleanup is the last phase that transforms Tree nodes, before GenICode

takes over and produces ICode, a stack-based IR.

phase name id description

---------- -- -----------

parser 1 parse source into ASTs, perform simple desugaring

namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects

typer 4 the meat and potatoes: type the trees

superaccessors 5 add super accessors in traits and nested classes

pickler 6 serialize symbol tables

refchecks 7 reference/override checking, translate nested objects

liftcode 8 reify trees

uncurry 9 uncurry, translate function values to anonymous classes

tailcalls 10 replace tail calls by jumps

specialize 11 @specialized-driven class and method specialization

explicitouter 12 this refs to outer pointers, translate patterns

erasure 13 erase types, add interfaces for traits

lazyvals 14 allocate bitmaps, translate lazy vals into lazified defs

lambdalift 15 move nested functions to top level

constructors 16 move field definitions into constructors

flatten 17 eliminate inner classes

mixin 18 mixin composition

/*---*/

cleanup 19 platform-specific cleanups, generate reflective calls

/*---*/

icode 20 generate portable intermediate code

inliner 21 optimization: do inlining

closelim 22 optimization: eliminate uncalled closures

dce 23 optimization: eliminate dead code

jvm 24 generate JVM bytecode

terminal 25 The last phase in the compiler chain

1

http://lamp.epfl.ch/~magarcia

Contents

1 Motivation 3
1.1 How ApplyDynamic nodes come to being in erasure 3

2 Type rewriting 4
2.1 Adding private members . 4
2.2 Which Typer to use . 4

3 Two schools of thought on dynamic invocation 5
3.1 Platform-specific mechanism for dynamic invocation 6

4 Term rewriting for ApplyDynamic 6
4.1 Possibly an array . 7
4.2 Possibly a primitive . 8

5 Default case 8
5.1 No caching . 10
5.2 Single-slot most-recently-used caching 10
5.3 Caching for all classes seen for receiver 11
5.4 Trees for caches . 11

6 Other rewritings 12
6.1 VM-reflected classes for Scala class literals of value classes, in-

cluding for the Unit class . 12
6.2 Emptying the stack at the end of a try-block 13
6.3 Caching of interned symbol literals 13
6.4 Wrapped arrays turned into normal arrays 15

7 Type parameters and Structural types 16

8 Scala.NET 17
8.1 Non-fixed types of formals . 17

8.1.1 Translation forJVM . 18
8.2 Static caches . 18
8.3 Class literals of value classes . 19
8.4 Arrays . 19

2

1 Motivation

Quoting from the SLS [2, §3.2.7]:

A compound type T1 with ...with Tn { R } represents objects with
members as given in the component types T1, . . . , Tn and the re-
finement { R }. A refinement { R } contains declarations and type
definitions. If a declaration or definition overrides a declaration or
definition in one of the component types T1, . . . , Tn, the usual rules
for overriding (§5.1.4) apply; otherwise the declaration or definition
is said to be “structural”. . . . A reference to a structurally defined
member (method call or access to a value or variable) may generate
binary code that is significantly slower than an equivalent code to a
non-structural member.

Before arriving at this phase, ApplyDynamic nodes were last touched by
erasure (Sec. 1.1). Now cleanup has to figure out a way to efficiently implement
the ApplyDynamic semantics, which are:

runtime method lookup + reflective invocation, where method lookup
is based on (a) the dynamic type of the receiver and (b) static types
of the formals at the callsite.

Runtime caches [1] are the best solution in almost all cases. We review how
code is emitted for that in Sec. 4. The remaining term rewritings in cleanup

don’t have anything to do with ApplyDynamic nor with each other (Sec. 6).

1.1 How ApplyDynamic nodes come to being in erasure

Eraser is a custom typer that receives “pre-erased” trees, i.e. trees that in general
have null tpe and have been possible transformed by PreTransformer. One
such pre-transform substitutes ApplyDynamic nodes for Apply nodes denoting a
structural reference (call or access) as follows:

/*- pre-era-apply (6) */

/**

* Make dynamic applications easier to detect by wrapping them in a dedicated node,

* removing any type application in the process.

* CleanUp will lower them into cache-supported reflective calls.

*

*/

case Apply(fn, args) =>

{

def doDynamic(fn: Tree, qual: Tree): Tree = {

if (fn.symbol.owner.isRefinementClass && !fn.symbol.isOverridingSymbol)

ApplyDynamic(qual, args) setSymbol fn.symbol setPos tree.pos

else tree

}

fn match {

case Select(qual, _) => doDynamic(fn, qual)

case TypeApply(fni@Select(qual, _), _) =>

doDynamic(fni, qual)// type parameters are irrelevant in case of dynamic call

case _ => tree

}

}

3

2 Type rewriting

2.1 Adding private members

Because cleanup adds private class members only, it gets by without being an
InfoTransform. However, it does mutate Types in symbols’ infos (adding to
info.decls, but never removing or altering an entry). For example:

/*- during addStaticVariableToClass(), as part of creating the method cache. */

currentClass.info.decls enter varSym

/*- during addStaticMethodToClass(), as part of creating the method cache. */

currentClass.info.decls enter methSym

/*- during getSymbolStaticField(),

caching an interned symbol for lock-free access after the first access. */

currentClass.info.decls enter stfieldSym

2.2 Which Typer to use

The only transformer in this phase (CleanUpTransformer) doesn’t subclass TypingTransformer,
keeping track instead of a transformer-local Typer instance (called localTyper),
obtained from global.analyzer.typer as shown below:

private var localTyper: analyzer.Typer = null

. . .

override def transform(tree: Tree): Tree = tree match {

. . .

case Template(parents, self, body) =>

localTyper = typer.atOwner(tree, currentClass)

The thus managed transformer-local Typer is the right one most of the time,
however in one occassion (shown below) the right one is typer.atOwner(tree,

currentClass):

/* Returns the symbol and the tree for the symbol field interning a reference to a symbol ’synmname’.

* If it doesn’t exist, i.e. the symbol is encountered the first time,

* it creates a new static field definition and initialization and returns it.

*/

private def getSymbolStaticField(pos: Position, symname: String, rhs: Tree, tree: Tree): Symbol =

symbolsStoredAsStatic.getOrElseUpdate(symname, {

val theTyper = typer.atOwner(tree, currentClass) /*- now this Typer is needed, not localTyper. */

. . .

Instead of managing by itself the typer to use (as CleanUpTransformer does)
a transformer extending the abstract class TypingTransformer gets that for free
(the typer is updated upon visiting a Template or a PackageDef), due to the inter-
play of the transform override and the atOwner method overloads in TypingTransformer:

4

Figure 1: Sec. 2

If this is the first time you hear about atOwner, perhaps you should also
know that there are many of them, some returning a Typer (e.g. the overloads
in Typers#Typer), others Unit (e.g. in Traverser), and yet others whatever its
by-name param evaluates to (e.g. in Transformer). Please fest on the details
(Figure 1).

3 Two schools of thought on dynamic invocation

Most of the brainpower of cleanup goes to lowering references to structural mem-
bers (this section and Sec. 4), but the transform() override in CleanUpTransformer

also performs other rewritings (Sec. 6).
When lowering ApplyDynamic nodes, there’s a main choice between:

1. VM-specific target code, Sec. 3.1

5

2. a more portable mechanism, which uses the appropriate reflection API
(JDK or .NET), Sec. 4.

That “main choice” is made within the “case ad@ApplyDynamic(qual0, params)”
clause of CleanUpTransformer’s transform() method (Listing 3).

The first mechanism above is picked via “invoke-dynamic”. All other options
below pick the second mechanism:

val refinementMethodDispatch =

ChoiceSetting ("-Ystruct-dispatch", "policy", "structural method dispatch policy",

List("no-cache", "mono-cache", "poly-cache", "invoke-dynamic"),

"poly-cache")

3.1 Platform-specific mechanism for dynamic invocation

It’s usually hard to resist the “solution looking for problem” bug. Initially,
cleanup performed its magic using only the reflection API of the target platform,
yet preserving semantics across platforms. We call this magic the “platform-
independent mechanism” (Sec. 4).

However, once InvokeDynamic on the JVM (and the Dynamic Language Run-
time on the CLR) appeared on scene, motivation was there for cleanup to leave
ApplyDynamic as-is (Listing 1), letting GenICode translate it into a VM-specific
version of “dynamic invocation”.

In the case of JVM:

case ApplyDynamic(qual, args) =>

assert(!forMSIL)

ctx.clazz.bootstrapClass = Some("scala.runtime.DynamicDispatch")

val ctx1 = genLoad(qual, ctx, ObjectReference)

genLoadArguments(args, tree.symbol.info.paramTypes, ctx1)

ctx1.bb.emit(CALL_METHOD(tree.symbol, InvokeDynamic), tree.pos)

ctx1

TODO How does the above fare when:

- the receiver is an array (array-op case, as well as maybe-array case),

- the receiver is a primitive value (primitive-op case, as well as maybe-primtive case)

4 Term rewriting for ApplyDynamic

Inside the else branch in Listing 1 can be found the entry point to all-things
platform-independent rewriting of structural calls: callAsReflective(List[Type],

Type). Falling under this category:

1. the receiver is possibly an array (runtime info needed), Sec. 4.1.

2. the receiver is possibly a primitive value (runtime info needed), Sec. 4.2.

3. default case, Sec. 5. For this case (only), and depending on the caching
strategy, the emitted code is one of:

(a) No caching, Sec. 5.1.

6

Listing 1: Two mechanisms to lower structural calls: platform-dependent
(Sec. 3.1) and portable (Sec. 4)

if (settings.refinementMethodDispatch.value == "invoke-dynamic") {

localTyper.typed(treeCopy.ApplyDynamic(ad, transform(qual), transformTrees(params)))

}

else {

/* ### BODY OF THE TRANSFORMATION -> remember we’re in case ad@ApplyDynamic(qual, params) ### */

val t: Tree = ad.symbol.tpe match {

case MethodType(mparams, resType) =>

assert(params.length == mparams.length)

typedPos {

val sym = currentOwner.newValue(ad.pos, mkTerm("qual")) setInfo qual0.tpe

qual = safeREF(sym)

BLOCK(

VAL(sym) === qual0,

callAsReflective(mparams map (_.tpe), resType)

)

}

}

/* We return the dynamic call tree, after making sure no other

* clean-up transformation are to be applied on it. */

transform(t)

}

(b) Single-slot most-recently-used caching, Sec. 5.2.

(c) Caching for all actual types seen for receiver, Sec. 5.3.

Summing up, callAsReflective() makes a choice as shown below, because dif-
ferent code has to be emitted to operate on a primitive vs. an array vs. an
object:

localTyper typed (

if (isMaybeBoxed && isJavaValueMethod) genValueCallWithTest

else if (isArrayMethodSignature && isDefinitelyArray) genArrayCall

else if (isArrayMethodSignature && isMaybeArray) genArrayCallWithTest

else genDefaultCall

)

4.1 Possibly an array

We arrived here taking one of the branches in Sec. 4.
The entry points for this case are genArrayCallWithTest() and genArrayCall():

/** A conditional Array call, when we can’t determine statically if the argument is

* an Array, but the structural type method signature is consistent with an Array method

* so we have to generate both kinds of code.

*/

def genArrayCallWithTest =

IF ((qual GETCLASS()) DOT nme.isArray) THEN genArrayCall ELSE genDefaultCall

7

/** A native Array call. */

def genArrayCall = fixResult(

methSym.name match {

/*- let’s keep in mind that ‘args’ was defined as ‘qual :: params’ */

case nme.length =>

/*- scala.Int.box(scala.runtime.ScalaRunTime.array_length(<qual>)) */

REF(boxMethod(IntClass)) APPLY (REF(arrayLengthMethod) APPLY args)

case nme.update =>

/*- scala.runtime.ScalaRunTime.array_update(

<qual>,

scala.Int.unbox(<params(0)>),

<params(1)>

) */

REF(arrayUpdateMethod) APPLY List(args(0), (REF(unboxMethod(IntClass)) APPLY args(1)), args(2))

case nme.apply =>

/*- scala.runtime.ScalaRunTime.array_apply(

<qual>,

scala.Int.unbox(<params(0)>)

) */

REF(arrayApplyMethod) APPLY List(args(0), (REF(unboxMethod(IntClass)) APPLY args(1)))

case nme.clone_ =>

/*- scala.runtime.ScalaRunTime.array_clone(<qual>) */

REF(arrayCloneMethod) APPLY List(args(0))

},

mustBeUnit = methSym.name == nme.update

)

4.2 Possibly a primitive

We arrived here taking one of the branches in Sec. 4.
The entry point for this case is genValueCallWithTest() and genValueCall():

def genValueCallWithTest = {

val (operator, test) = getPrimitiveReplacementForStructuralCall(methSym.name)

IF (test) THEN genValueCall(operator) ELSE genDefaultCall

}

/** A possible primitive method call, represented by methods in BoxesRunTime. */

def genValueCall(operator: Symbol) = fixResult(REF(operator) APPLY args)

5 Default case

We arrived here taking one of the branches in Sec. 4.
The entry point for this case is genDefaultCall() (Listing 2).
Forgetting about caching for a moment, the tree emitted for the “default

case” is of the form “getClass() on the receiver, then getMethod() on that class,
then invoke() on that method”, but in fact that’s the “default” case.

There’s a minor variation in the emitted code when the method to invoke re-
turns a primitive value (because erasure consistently adapts ApplyDynamic nodes
by adding boxing around them). Quoting from source:

8

Listing 2: Sec. 5

def genDefaultCall = {

/*- symbol for

invoke() in j.l.reflect.Method

or

Invoke() in System.Reflection.MethodInfo

*/

val invokeName = MethodClass.tpe member nme.invoke_

/*- tree denoting whatever cache is supposed to be used at runtime (including none). */

def cache = safeREF(reflectiveMethodCache(ad.symbol.name.toString, paramTypes))

/*- tree denoting a Method object, retrieved from cache

using as key the actual class of the receiver of the ApplyDynamic. */

def lookup = Apply(cache, List(qual GETCLASS))

/*- tree denoting an object array,

whose elems are the actual args of the ApplyDynamic. */

def invokeArgs = ArrayValue(TypeTree(ObjectClass.tpe), params)

/*- tree denoting reflective invocation. */

def invocation = (lookup DOT invokeName)(qual, invokeArgs)

/*- trees to piece together another tree,

try { method.invoke } catch { case e: InvocationTargetExceptionClass => throw e.getCause() }

which constitute the return value for genDefaultCall()

*/

val invokeExc = currentOwner.newValue(ad.pos, mkTerm("")) setInfo InvocationTargetExceptionClass.tpe

def catchVar = Bind(invokeExc, Typed(Ident(nme.WILDCARD), TypeTree(InvocationTargetExceptionClass.tpe)))

def catchBody = Throw(Apply(Select(Ident(invokeExc), nme.getCause), Nil))

/*- wrapping (or not) the try expr via fixResult(). */

fixResult(TRY (invocation) CATCH { CASE (catchVar) ==> catchBody } ENDTRY)

}

invoke() needs an array of AnyRefs that are the method’s arguments.
The erasure phase guarantees that any parameter passed to a dy-
namic apply is compatible (through boxing). Boxed Ints et al. is
what invoke() expects when the applied method expects Ints, hence
no change needed there.

In the end, the result of invoke() must be fixed, again to deal with
arrays. This is provided by fixResult(). fixResult() will cast the
invocation’s result to the method’s return type, which is generally ok,
except when this type is a value type (Int et al.) in which case it
must [be boxed] because . . . erasure made sure the result is expected
to be an AnyRef. [in contrast, indexing an array of primitives leaves
a primitive on the operand stack]

Details:

def fixResult(tree: Tree, mustBeUnit: Boolean = false) =

if (mustBeUnit || resultSym == UnitClass) BLOCK(tree, REF(BoxedUnit_UNIT)) // boxed unit

else if (resultSym == ObjectClass) tree // no cast necessary

else tree AS_ATTR boxedResType // cast to expected type

9

Listing 3: Main transform method, Sec. 3 and Sec. 5

override def transform(tree: Tree): Tree = tree match {

. . .

case ad@ApplyDynamic(qual0, params) =>

. . .

case Template(parents, self, body) =>

. . .

Bringing back caching into the picture: the lowering for the “default case”
comprises actually the two case handlers shown in Listing 3:

1. The first case clause expands the ApplyDynamic node proper. It’s here
choices are made:

(a) VM-dependent or not, Sec. 3

(b) for the latter between primitive, array, or object receiver, Sec. 4

(c) and finally for the last one between caching strategy, Sec. 5.

2. The second case clause adds Trees for the caches to support method
lookup. These Trees (if any) were built by the previous rewriting Sec. 5.4.

5.1 No caching

There’s no cache (in the sense of a cache indexed by the actual type of the
receiver) as in mono-cache or poly-cache. Instead, a helper method is emit-
ted, which in turn accesses a pre-computed array (containing types of for-
mals) and the static field holding this array is called (somewhat confusingly)
“reflParams$Cache”.

case NO_CACHE =>

/* Implementation of the cache is as follows for method "def xyz(a: A, b: B)":

var reflParams$Cache: Array[Class[_]] = Array[JClass](classOf[A], classOf[B])

def reflMethod$Method(forReceiver: JClass[_]): JMethod =

forReceiver.getMethod("xyz", reflParams$Cache)

*/

5.2 Single-slot most-recently-used caching

case MONO_CACHE =>

/* Implementation of the cache is as follows for method "def xyz(a: A, b: B)"

(but with a SoftReference wrapping reflClass$Cache, similarly in the poly Cache) :

var reflParams$Cache: Array[Class[_]] = Array[JClass](classOf[A], classOf[B])

var reflMethod$Cache: JMethod = null

10

var reflClass$Cache: JClass[_] = null

def reflMethod$Method(forReceiver: JClass[_]): JMethod = {

if (reflClass$Cache != forReceiver) {

reflMethod$Cache = forReceiver.getMethod("xyz", reflParams$Cache)

reflClass$Cache = forReceiver

}

reflMethod$Cache

}

*/

5.3 Caching for all classes seen for receiver

case POLY_CACHE =>

/* Implementation of the cache is as follows for method "def xyz(a: A, b: B)"

(SoftReference so that it does not interfere with classloader garbage collection, see ticket

#2365 for details):

var reflParams$Cache: Array[Class[_]] = Array[JClass](classOf[A], classOf[B])

var reflPoly$Cache: SoftReference[scala.runtime.MethodCache] = new SoftReference(new EmptyMethodCache())

def reflMethod$Method(forReceiver: JClass[_]): JMethod = {

var method: JMethod = reflPoly$Cache.find(forReceiver)

if (method != null)

return method

else {

method = ScalaRunTime.ensureAccessible(forReceiver.getMethod("xyz", reflParams$Cache))

reflPoly$Cache = new SoftReference(reflPoly$Cache.get.add(forReceiver, method))

return method

}

}

*/

5.4 Trees for caches

TODO

/* Some cleanup transformations add members to templates (classes, traits, etc).

* When inside a template (i.e. the body of one of its members), two maps

* (newStaticMembers and newStaticInits) are available in the tree transformer. Any mapping from

* a symbol to a MemberDef (DefDef, ValDef, etc.) that is in newStaticMembers once the

* transformation of the template is finished will be added as a member to the

* template. Any mapping from a symbol to a tree that is in newStaticInits, will be added

* as a statement of the form "symbol = tree" to the beginning of the default

* constructor. */

case Template(parents, self, body) =>

11

Figure 2: Sec. 6.1

6 Other rewritings

6.1 VM-reflected classes for Scala class literals of value
classes, including for the Unit class

And the code emitted for the following class literals is . . .

1. Check the following REPL session:

scala> ().getClass

res1: java.lang.Class[Unit] = void

To recap, BoxedUnitModule is (the static part of) scala.runtime.BoxedUnit.
Details in Figure 2.

2. For all other Scala values classes, and on the JVM, the snippet below
emits things like “java.lang.Boolean.TYPE”. REPL-wise:

scala> java.lang.Boolean.TYPE

res2: java.lang.Class[java.lang.Boolean] = boolean

case Literal(c) if (c.tag == ClassTag) && !forMSIL=>

val tpe = c.typeValue

typedWithPos(tree.pos) {

if (isValueClass(tpe.typeSymbol)) {

if (tpe.typeSymbol == UnitClass)

12

Figure 3: Sec. 6.2

REF(BoxedUnit_TYPE)

else

Select(REF(boxedModule(tpe.typeSymbol)), nme.TYPE_)

}

else tree

}

6.2 Emptying the stack at the end of a try-block

Quoting a source comment. Snippet in Figure 3:

Rewrite all try blocks with a result != {Unit, All} such that they
store their result in a local variable. The catch blocks are adjusted
as well. The try tree is subsituted by a block whose result expression
is that variable.

Talking about emptying the stack, there’s a compiler plugin (“imp”1) to lower
ASTs into a stackless, three-address-like IR, similar in spirit to the Jimple IR
in McGill’s Soot framework.

6.3 Caching of interned symbol literals

Scala symbol literals (§1.3.7 in SLS) are realized via a library class, scala.Symbol,
and a global UniquenessCache[String, scala.Symbol] (Figure 4). Just to clarify,
scala.Symbol (the library class) has nothing to do with scala.reflect.internal.Symbol

(the compiler class).
Detailed source comment! Enjoy:

For instance, say we have a Scala class:

class Cls {

// ...

def someSymbol = ‘symbolic

// ...

}

1Moving Scala ASTs one step closer to C, http://lamp.epfl.ch/~magarcia/

ScalaCompilerCornerReloaded/2011Q2/Moving3A.pdf

13

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q2/Moving3A.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q2/Moving3A.pdf

Figure 4: Sec. 6.3

After transformation, this class looks like this:

class Cls {

private "static" val <some_name>$symbolic = Symbol("symbolic")

// ...

def someSymbol = <some_name>$symbolic

// ...

}

The reasoning behind this transformation is the following. Symbols
get interned – they are stored in a global map which is protected
with a lock. The reason for this is making equality checks quicker.
But calling Symbol.apply, although it does return a unique symbol,
accesses a locked object, making symbol access slow. To solve this,
the unique symbol from the global symbol map in Symbol is accessed
only once during class loading, and after that, the unique symbol is
in the static member. Hence, it is cheap to both reach the unique
symbol and do equality checks on it.

To give an impression of what scala.UniquenessCache does, it relies on:

import java.lang.ref.WeakReference

import java.util.WeakHashMap

import java.util.concurrent.locks.ReentrantReadWriteLock

14

Figure 5: Sec. 6.4

6.4 Wrapped arrays turned into normal arrays

// This transform replaces Array(Predef.wrapArray(Array(...)), <manifest>)

// with just Array(...)

case Apply(appMeth, List(Apply(wrapRefArrayMeth, List(array)), _))

if (wrapRefArrayMeth.symbol == Predef_wrapRefArray &&

appMeth.symbol == ArrayModule_overloadedApply.suchThat {

_.tpe.resultType.dealias.typeSymbol == ObjectClass

}) =>

super.transform(array)

The ArrayModule_overloadedApply overload of interest in object scala.Array is
shown below (other overloads in Figure 5):

/** Creates an array with given elements.

*

* @param xs the elements to put in the array

* @return an array containing all elements from xs.

*/

def apply[T: ClassManifest](xs: T*): Array[T] = {

val array = new Array[T](xs.length)

var i = 0

for (x <- xs.iterator) { array(i) = x; i += 1 }

array

}

TODO Example where the above AST is emitted.

15

7 Type parameters and Structural types

[1, p. 4] Scala disallows some interactions between abstract types and structural
types, and the Scala.Net compiler will follow suite. We look at the reasons for
this restriction after looking at examples.

In a nutshell:

Within a method declaration in a structural refinement, the type of
any value parameter may only refer to type parameters of the method
itself. This restriction does not apply to the function’s result type.

Examples of rejected programs:

• “error: Parameter type in structural refinement may not refer to an ab-
stract type defined outside that refinement”

def g2[T] (x : { def f(t : T): Boolean },

• “error: Parameter type in structural refinement may not refer to a type
member of that refinement”

def g3 (x : { type T; def t: T; def f(a: T): Boolean }) = x.f(x.t)

In contrast, the following are OK:

def g1 (x : { def f[T](a: T): Int }) = x.f[Int](4)

def g4[T] (x : { def f(a: Int): T }) = x.f(4)

To see why the restriction makes sense, consider what you would do if you
were the compiler :-) At the end of the day, given the static types at a “structural
callsite” the compiler has to emit code for the reflection API to return a method
reification. However (playing the devil’s advocate) it would be possible to obtain
at runtime the actual types of actual arguments. Yes, and in that case a method
lookup based on those would amount to dynamic dispatch on arguments, unlike
what the SLS specifies.

1. In some cases, the compiler can emit code to call that API with a list of
statically known type-representatives:

def g0(x: { def f(a: Int, b: List[Int]): Int }) = x.f(4, List(1,2,3))

2. In other cases the structural member defines a type param, but still each
callsite (“x.f[Int](4)” in the example below) allows inferring a statically-
known instantiated type:

def g1 (x : { def f[T](a: T): Int }) = x.f[Int](4)

3. However in cases like those below, different lookups would be needed for
the same callsite depending on type arguments provided by upstream in-
vokers. In the example below,

16

def undecisive[T](p: { def x(t: T): Int }, t: T) = p.x(t)

the callsite “p.x(t)” should result in lookup “getMethod("x", Array(Int))”
in one case and “getMethod("x", Array(String))” in another (example
adapted from2)

undecisive[Int](new { def x(t: Int) = t }, 4) // upstream invocation 1

undecisive[String](new { def x(t: String) = 5 }, "abc") // upstream invocation 2

Adapting an explanation from [1, p. 4] to the “undecisive” example:

The type variable T is instantiated to a concrete type every time
undecisive is called. Therefore, the static types of T-typed for-
mal params will in general be different for different calls to x in
the expression p.x(t).

That’s the correctness argument (to reiterate, the SLS specifies method
dispatch based on dynamic type of the receiver and static types of the for-
mals). But there’s also an implementation-related difficulty that confirms
the correctness-based design decision :-) Well, at least on the JVM:

On the other hand, the transformation of ApplyDynamic for p.x(t)

is done only once, in the body of undecisive, no matter what
type T will eventually be assigned to. The value of type variables
are not available at runtime [on the JVM] so that ApplyDynamic

cannot be compiled in a way that reconstructs the static types of
the method’s parameters at runtime.

Summing up:

• Member-local type params in structural members are allowed.

• Free type vars in structural members are not (except in their
result type).

8 Scala.NET

8.1 Non-fixed types of formals

The snippet below is accepted by the compiler, although it may result in struc-
tural callsites with non-fixed types for formals.

// accepted by the compiler

def gy[Y] (y: Y, x : { def f[T](a: T): Int }) = x.f(y)

In those cases where the T type var is replaced by a concrete type at a callsite,
we have fixed-types for formals. However, T can also be replaced as above by
another type var (Y in the example). Looks like that should be rejected.

As background info, the forJVM translation of the structural callsite can be
found in Sec. 8.1.1.

2http://scala-programming-language.1934581.n4.nabble.com/

scala-Structural-types-with-generic-type-question-td1992248.html

17

http://scala-programming-language.1934581.n4.nabble.com/scala-Structural-types-with-generic-type-question-td1992248.html
http://scala-programming-language.1934581.n4.nabble.com/scala-Structural-types-with-generic-type-question-td1992248.html

The examples in Listing 4 show that only a subset of all feasible receivers
are accepted by the compiler (e.g., ostr, oint, and oobj are rejected) while one
receiver that is acccepted causes NPE (the gy(null, null) invocation). That
leaves only ogen as an example of receiver that is both well-typed and doesn’t
fail at runtime.

8.1.1 Translation forJVM

After erasure:

def gy(y: java.lang.Object, x: java.lang.Object): Int = unbox(<apply-dynamic>(x#f, (y)))

and the MethodType in ad.symbol.info reads:

(a: java.lang.Object)Int

After genDefaultCall(), the following is emitted:

def gy(y: java.lang.Object, x: java.lang.Object): Int =

scala.Int.unbox(

{

val qual1: java.lang.Object = x;

{

var exceptionResult1: java.lang.Object = _;

try {

exceptionResult1 =

Test.reflMethod$Method1(qual1.getClass())

.invoke(qual1, Array[java.lang.Object]{y})

} catch {

case (1 @ (_: java.lang.reflect.InvocationTargetException))

=> { exceptionResult1 = throw 1.getCause() }

};

exceptionResult1

}.$asInstanceOf[java.lang.Integer]()

}

)

And the caches are:

final private <synthetic> <static> var reflParams$Cache1: Array[java.lang.Class] =

Array[java.lang.Class]{classOf[java.lang.Object]};

<synthetic> <static> def reflMethod$Method1(x$1: java.lang.Class): java.lang.reflect.Method =

x$1.getMethod("f", Test.reflParams$Cache1);

8.2 Static caches

Regarding Sec. 5.4: Statics are per-type-instantiation on CLR. The C# 2.0 spec
worded it concisely:

A static variable in a generic class declaration is shared amongst
all instances of the same closed constructed type, but is not shared
amongst instances of different closed constructed types . . . regardless
of whether the type of the static variable involves any type parameters
or not.

The CLR way: type-params owned by a class are visible in its static members.

18

1. If (a) a structural reference appears in a type P owning type params, and
(b) the caching policy is mono-cache or poly-cache; then there will be not
one (as on JVM) but in general many caches (one for each instantiation of
P). A similar situation occurs when caching interned symbols (Sec. 6.3).

2. Further cache fragmentation (and thus cache misses) result on the CLR
with poly-cache because there’s a different key for each instantiated type
of the receiver.

8.3 Class literals of value classes

Regarding Sec. 6.1. Something like “BoxedUnit_TYPE” should be emitted for the
class literal of Unit. Instead, GenMSIL is not aware about that special case:

case CONSTANT(const) =>

const.tag match {

case UnitTag => ()

. . .

case ClassTag =>

mcode.Emit(OpCodes.Ldtoken, msilType(const.typeValue))

mcode.Emit(OpCodes.Call, TYPE_FROM_HANDLE)

. . .

And also:

private def msilType(t: TypeKind): MsilType = (t: @unchecked) match {

case UNIT => MVOID

. . .

8.4 Arrays

Regarding Sec. 4.1. The CLR includes two kinds of arrays:

• vectors: same as arrays on the JVM i.e., zero-based single-dimensional
arrays.

• multi-dimensional arrays, where each dimension can have its own lower
and upper bounds.

At runtime, arrays of both kinds are objects that conform to the abstract
class [mscorlib]System.Array.

Quoting from the MSDN Help for the System.Type.IsArray property:

public static void Main()

{

int [] array = {1,2,3,4};

Type at = typeof(Array);

Type t = array.GetType();

Console.WriteLine("The type is {0}. Is this type an array? {1}", at, at.IsArray);

Console.WriteLine("The type is {0}. Is this type an array? {1}", t, t.IsArray);

}

This code produces the following output:

Type is System.Array. IsArray? False

Type is System.Int32[]. IsArray? True

19

Figure 6: Sec. 1

References

[1] Gilles Dubochet and Martin Odersky. Compiling structural types on the
JVM. In Ian Rogers, editor, 4th Workshop on the Implementation, Com-
pilation, Optimization of Object-Oriented Languages and Programming Sys-
tems, pages 34–41, 2009. http://infoscience.epfl.ch/record/138931/

files/2009_structural.pdf.

[2] Martin Odersky. The Scala Language Specification. http://www.

scala-lang.org/docu/files/ScalaReference.pdf, March 2009.

20

http://infoscience.epfl.ch/record/138931/files/2009_structural.pdf
http://infoscience.epfl.ch/record/138931/files/2009_structural.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf

Listing 4: Sec. 8.1

object Test {

def gy[Y] (y: Y, x : { def f[T](a: T): Int }) = x.f(y)

val ostr = new { def f(a: String) = 4 }

val oint = new { def f(a: Int) = 4 }

val oobj = new { def f(a: Object) = 4 }

val ogen = new { def f[T](a: T) = 4 }

def main(args: Array[String]) {

/*-

error: type mismatch;

found : Test.oint.type (with underlying type java.lang.Object{def f(a: Int): Int})

required: AnyRef{def f[T](a: T): Int}

gy(123, oint)

^

error: type mismatch;

found : Test.ostr.type (with underlying type java.lang.Object{def f(a: String): Int})

required: AnyRef{def f[T](a: T): Int}

gy("abc", ostr)

^

error: type mismatch;

found : Test.oobj.type (with underlying type java.lang.Object{def f(a: java.lang.Object): Int})

required: AnyRef{def f[T](a: T): Int}

gy(this, oobj)

^

*/

gy(null, null) /*- accepted by compiler, results in NullPointerException at runtime. */

gy(null, ogen) /*- runs ok. */

gy(null, oobj.asInstanceOf[AnyRef{ def f[T](a: T): Int }]) /*- runs ok too. */

}

}

21

	Motivation
	How ApplyDynamic nodes come to being in erasure

	Type rewriting
	Adding private members
	Which Typer to use

	Two schools of thought on dynamic invocation
	Platform-specific mechanism for dynamic invocation

	Term rewriting for ApplyDynamic
	Possibly an array
	Possibly a primitive

	Default case
	No caching
	Single-slot most-recently-used caching
	Caching for all classes seen for receiver
	Trees for caches

	Other rewritings
	VM-reflected classes for Scala class literals of value classes, including for the Unit class
	Emptying the stack at the end of a try-block
	Caching of interned symbol literals
	Wrapped arrays turned into normal arrays

	Type parameters and Structural types
	Scala.NET
	Non-fixed types of formals
	Translation forJVM

	Static caches
	Class literals of value classes
	Arrays

