
Rewriting a method body to eliminate

recursive tail calls

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

September 26th, 2011

Abstract

The tailcalls phase gets its name from “Tail call elimination”, the pro-
cess of rewriting the body of a non-overridable method m (containing tail-
recursive invocations to m, possibly on an instance different from this)
into a loop, with tail-recursive callsites replaced by back-edges. Addition-
ally, tailcalls shows a convenient way of processing nested evaluation
contexts (a technique that simplifies AST processing a lot).

phase name id description

---------- -- -----------

parser 1 parse source into ASTs, perform simple desugaring

namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects

typer 4 the meat and potatoes: type the trees

superaccessors 5 add super accessors in traits and nested classes

pickler 6 serialize symbol tables

refchecks 7 reference/override checking, translate nested objects

liftcode 8 reify trees

uncurry 9 uncurry, translate function values to anonymous classes

/*---*/

tailcalls 10 replace tail calls by jumps

/*---*/

specialize 11 @specialized-driven class and method specialization

explicitouter 12 this refs to outer pointers, translate patterns

erasure 13 erase types, add interfaces for traits

lazyvals 14 allocate bitmaps, translate lazy vals into lazified defs

lambdalift 15 move nested functions to top level

constructors 16 move field definitions into constructors

flatten 17 eliminate inner classes

mixin 18 mixin composition

cleanup 19 platform-specific cleanups, generate reflective calls

icode 20 generate portable intermediate code

inliner 21 optimization: do inlining

closelim 22 optimization: eliminate uncalled closures

dce 23 optimization: eliminate dead code

jvm 24 generate JVM bytecode

terminal 25 The last phase in the compiler chain

1

http://lamp.epfl.ch/~magarcia

Contents

1 Intro 3
1.1 Shape of the transformed AST 3
1.2 Connection to other phases . 3

2 Mechanics 3
2.1 Passing context down the tree . 3
2.2 Querying the context on the way back 4
2.3 Under the hood . 5

Listing 1: Sec. 1.1

class C(that: C) {

def factorial(n: Int) = tcfact(1, n)

private def tcfact(acc: Int, n: Int): Int =

if(n == 0)

acc

else if(n == 1) {

val nonTail = tcfact(acc * n, n - 1)

nonTail

} else if(n == 2) {

that.tcfact(acc * 2, 1)

} else

tcfact(acc * n, n - 1);

}

Listing 2: Sec. 1.1

private def tcfact(acc: Int, n: Int): Int = {

<synthetic> val _$this: C = C.this;

tcfact($this,acc,n){

if (n.==(0))

acc

else

if (n.==(1))

{

val nonTail: Int = C.this.tcfact(acc.*(n), n.-(1));

nonTail

}

else

if (n.==(2))

_tcfact(C.this.that, acc.*(2), 1)

else

_tcfact(C.this, acc.*(n), n.-(1))

}

}

2

1 Intro

1.1 Shape of the transformed AST

The program in Listing 1 contains recursive invocations (targeting tcfact()) in
both tail and non-tail-position, in one case with a receiver different from this.
The snippet in Listing 2 shows the resulting AST, with a method-level _$this

variable and a loop. Callsites in non-tail positions remain as-is.
Some comments:

• had the method been annotated @tailrec, any non-rewritable recursive
call leads to compile error.

def isMandatory = method.hasAnnotation(TailrecClass) && !forMSIL

• the full story about a method being non-overridable is:

/** Is this symbol effectively final? I.e, it cannot be overridden */

final def isEffectivelyFinal: Boolean = (

isFinal

|| hasModuleFlag && !settings.overrideObjects.value

|| isTerm && (

isPrivate

|| isLocal

|| owner.isClass && owner.isEffectivelyFinal

)

)

1.2 Connection to other phases

tailcalls runs early in the pipeline: multiple parameter lists have been col-
lapsed into a single one (by uncurry) but other than that ASTs are pretty rich
at this point: input ASTs may contain local definitions, outer-inner classes,
traits, and so on. However tailcalls can do its work just by considering a
single method at a time.

In turn, follow-up phases do not depend on taill-call elimination. In fact the
transform is deactivated by choosing the notailcalls debug level:

val g = ChoiceSetting ("-g", "level", "Set level of generated debugging info.",

List("none", "source", "line", "vars", "notailcalls"),

"vars")

2 Mechanics

2.1 Passing context down the tree

Imagine you’re the TailCallElimination transformer. Upon visiting a callsite
that looks promising (i.e. it’s recursive, to an eligible method) how do you know
whether it’s in tail-position? The answer is given by the “current context”,
which is well-defined within a method. Whenever a new context is established,
the previous one is re-instantiated upon returning from the transformation under
the new context:

3

def transform(tree: Tree, nctx: Context): Tree = {

val saved = ctx

ctx = nctx

try transform(tree)

finally this.ctx = saved

}

The following two ways are representative of establishing the current context:

1. Upon visiting any method:

case dd @ DefDef(mods, name, tparams, vparams, tpt, rhs) =>

val newCtx = new Context(dd)

val newRHS = transform(rhs, newCtx)

. . .

2. To mark some sub-expressions as not being in tail-position. For example:
“no calls inside a try are in tail position, but keep recursing for nested
functions”

In words, noTailTransform(tree) transforms tree under the influence of
noTailContext() as current context (which amounts to a copy of the cur-
rent context, save for its tailPos flag which indicates “currently not in
tail-position”).

2.2 Querying the context on the way back

In some cases, the visitor needs to know what happened downstream. For ex-
ample, whether all eligible callsites were actually turned into jumps (as required
by “@tailrec”). In the example, those rewritings also set the accessed field on
the visitor:

def rewriteTailCall(recv: Tree): Tree = {

log("Rewriting tail recursive call: " + fun.pos.lineContent.trim)

ctx.accessed = true

typedPos(fun.pos)(Apply(Ident(ctx.label), recv :: transformArgs))

}

Afterwards, upon leaving a DefDef node, the context can be queried:

4

2.3 Under the hood

The previous sections already cover the main points about the transformation.
The method shown in Listing 3 conveys most of the remaining details. It’s
invoked as shown below (notice the special casing of short-circuit evaluation):

5

Listing 3: Sec. 2.3

/** A possibly polymorphic apply to be considered for tail call transformation.

*/

def rewriteApply(target: Tree, fun: Tree, targs: List[Tree], args: List[Tree]) = {

val receiver: Tree = fun match {

case Select(qual, _) => qual

case _ => EmptyTree

}

def receiverIsSame = ctx.enclosingType.widen =:= receiver.tpe.widen

def receiverIsSuper = ctx.enclosingType.widen <:< receiver.tpe.widen

def isRecursiveCall = (ctx.method eq fun.symbol) && ctx.tailPos

def transformArgs = noTailTransforms(args)

def matchesTypeArgs = ctx.tparams sameElements (targs map (_.tpe.typeSymbol))

/** Records failure reason in Context for reporting.

* Position is unchanged (by default, the method definition.)

*/

def fail(reason: String) = {

debuglog("Cannot rewrite recursive call at: " + fun.pos + " because: " + reason)

ctx.failReason = reason

treeCopy.Apply(tree, target, transformArgs)

}

/** Position of failure is that of the tree being considered.

*/

def failHere(reason: String) = {

ctx.failPos = fun.pos

fail(reason)

}

def rewriteTailCall(recv: Tree): Tree = {

log("Rewriting tail recursive call: " + fun.pos.lineContent.trim)

ctx.accessed = true

typedPos(fun.pos)(Apply(Ident(ctx.label), recv :: transformArgs))

}

if (!ctx.isEligible) fail("it is neither private nor final so can be overridden")

else if (!isRecursiveCall) {

if (receiverIsSuper) failHere("it contains a recursive call targetting a supertype")

else failHere(defaultReason)

}

else if (!matchesTypeArgs) failHere("it is called recursively with different type arguments")

else if (receiver == EmptyTree) rewriteTailCall(This(currentClass))

else if (forMSIL) fail("it cannot be optimized on MSIL")

else if (!receiverIsSame) failHere("it changes type of ’this’ on a polymorphic recursive call")

else rewriteTailCall(receiver)

}

6

	Intro
	Shape of the transformed AST
	Connection to other phases

	Mechanics
	Passing context down the tree
	Querying the context on the way back
	Under the hood

