
The refchecks phase (Part 1)

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

September 20th, 2011

Abstract

TODO

phase name id description

---------- -- -----------

parser 1 parse source into ASTs, perform simple desugaring

namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects

typer 4 the meat and potatoes: type the trees

superaccessors 5 add super accessors in traits and nested classes

pickler 6 serialize symbol tables

/*---*/

refchecks 7 reference/override checking, translate nested objects

/*---*/

liftcode 8 reify trees

uncurry 9 uncurry, translate function values to anonymous classes

tailcalls 10 replace tail calls by jumps

specialize 11 @specialized-driven class and method specialization

explicitouter 12 this refs to outer pointers, translate patterns

erasure 13 erase types, add interfaces for traits

lazyvals 14 allocate bitmaps, translate lazy vals into lazified defs

lambdalift 15 move nested functions to top level

constructors 16 move field definitions into constructors

flatten 17 eliminate inner classes

mixin 18 mixin composition

cleanup 19 platform-specific cleanups, generate reflective calls

icode 20 generate portable intermediate code

inliner 21 optimization: do inlining

closelim 22 optimization: eliminate uncalled closures

dce 23 optimization: eliminate dead code

jvm 24 generate JVM bytecode

terminal 25 The last phase in the compiler chain

1

http://lamp.epfl.ch/~magarcia

Contents

1 Intro 3
1.1 Type rewriting . 3

2 Lowering of modules 4
2.1 Top-level module . 4
2.2 A non-overridding module that has no outer instance 6
2.3 An overridding module that has outer instance 7

3 First lowering of lazy vals 7

4 Checks 8

2

1 Intro

The refchecks phase is an InfoTransform whose transformer (RefCheckTransformer)
is tasked with most of the transform’s bookkeeping (Figure 1). In terms of line
count, AST checking takes the lion share, followed by term rewriting and a very
focused type rewriting (Sec. 1.1).

1. Term rewriting comprises:

(a) module lowering, Sec. 2

(b) first part of lazy val lowering, Sec. 3

(c) Import nodes are sent into oblivion. Just an example why refactorings
can’t be made much later than typer.

2. Checks comprise:

TODO

1.1 Type rewriting

Type rewriting is fairly simple:

// in reflect.internal.transform.RefChecks

def transformInfo(sym: Symbol, tp: Type): Type =

if (sym.isModule && !sym.isStatic) NullaryMethodType(tp)

else tp

// in nsc.typechecker.RefChecks

override def transformInfo(sym: Symbol, tp: Type): Type = {

if (sym.isModule && !sym.isStatic) sym setFlag (lateMETHOD | STABLE)

super.transformInfo(sym, tp)

}

The “!sym.isStatic” guard is a consequence of the way that top-level (i.e.,
static) modules are lowered as compared to non-static ones (i.e, those having
an outer instance). Internally, the class of non-static modules will be an inner
class. If this is all new to you, here’s a good tutorial1.

At the risk of stepping ahead of ourselves (details in Sec. 2): the main
difference between lowering top-level vs. non-static modules is that the module’s
symbol becomes associated to a static field (for a top-level module) or to an
instance getter (for a non-static module). Thus the NullaryMethodType for the
latter.

The following excerpt from the SLS helps in seeing why those lowerings have
to be different (“Object definitions”, SLS §5.4).

[An object definition] is roughly equivalent to the following definition
of a lazy value:

lazy val m = new sc with mt1 with . . . with mtn { this: m.type => stats }

1http://weblogs.java.net/blog/cayhorstmann/archive/2011/08/05/

inner-classes-scala-and-java

3

http://weblogs.java.net/blog/cayhorstmann/archive/2011/08/05/inner-classes-scala-and-java
http://weblogs.java.net/blog/cayhorstmann/archive/2011/08/05/inner-classes-scala-and-java

Figure 1: Sec. 1

. . . The expansion given above is not accurate for top-level objects.
It cannot be because variable and method definitions cannot appear
on the top-level outside of a package object (§9.3). Instead, top-level
objects are translated to static fields.

2 Lowering of modules

This lowering is self-contained, so we review it first:

private def eliminateModuleDefs(tree: Tree): List[Tree]

Before looking at the translation recipe, it’s useful to keep in mind that the
module’s symbol is mentioned in general in other trees. Given that eliminateModuleDefs()
doesn’t return the original ModuleDef, among the trees it returns one should ful-
fill the role of “module getter” (and carry the ModuleDef’s symbol).

Common to all the code generation alternatives below (Sec. 2.1 to Sec. 2.3)
a tree is built for the “invisible” module class of the module (Listing 1). This
tree (“cdef” for short) carries the existing module class symbol:

val classSym = sym.moduleClass

val cdef = ClassDef(mods | MODULE, name.toTypeName, Nil, impl)

setSymbol classSym setType NoType

2.1 Top-level module

In this case, no other tree is returned. Where does the module symbol go,
then? It’s still reachable via sourceModule in cdef’s ModuleClassSymbol (Fig-
ure 2). Please notice this navigation path is not shown in Listing 1.

4

Listing 1: Sec. 2

The internal representation of classes and objects:

class Foo is "the class" or sometimes "the plain class"

object Foo is "the module"

class Foo$ is "the module class" (invisible to the user: it implements object Foo)

class Foo <

^ ^ (2) \

| | | \

| (5) | (3)

| | | \

(1) v v \

object Foo (4)-> > class Foo$

(1) companionClass

(2) companionModule

(3) linkedClassOfClass

(4) moduleClass

(5) companionSymbol

In order to see that no other phase further processes cdef, let’s -Xprint-icode
-uniqid the following:

object p

class C { def m = p }

Say the module symbol has id #7576. Throughout all phases, an access to p

points to that symbol, and what is returned is an instance of its module class
(whose id is #7577):

def m(): object p#7577 { /*- ’object’ is displayed but in fact it’s not a singleton type,

we’re in ICode after all. */

locals:

startBlock: 1

blocks: [1]

1:

4 LOAD_MODULE object p#7576

4 RETURN(REF(object p#7577))

}

Further AST processing does come into play, at the very last minute. GenJVM

and in GenMSIL add a static field (and its initializer) to the class emitted for cdef

(look for addModuleInstanceField()):

val MODULE_INSTANCE_FIELD: NameType = NameTransformer.MODULE_INSTANCE_NAME // "MODULE$"

Additionally, LOAD_MODULE is translated as getstatic (JVM) or ldsfld (MSIL)
of that field.

TODO Scala.Net: if cdef is polymorphic, then a naive translation

would result in several instances for the same module.

5

Figure 2: Sec. 2.1

2.2 A non-overridding module that has no outer instance

If there’s an outer class, then it’s possible to rephrase (module def, module
access) in terms of (field, getter) in addition to the module class cdef that’s
already built. That’s a good approximation, however the field is sometimes a
variable (dubbed “mod-var”) because the (mod-var, getter) may also end up
being added to a method, for example:

class MethodModuleExample { def m() { object p } }

or to a block:

class BlockModuleExample {

def m(b: Boolean) {

if(b) {

object p

}

}

}

Don’t worry too much about this because anyway you won’t learn the full
story by looking at refchecks alone. The lowering of modules is completed in
mixin. For now, we can see how refchecks adds mod-var + getter for all the
shapes above (“module in class”, “module in method”, “module in statement
block”).

A piece of information that will be useful later: the mode-var is always anno-
tated @volatile whether it’s a field or local (the method in Listing 2 is invoked
with accessor bound to ModuleDef.symbol). On related note, @volatile is cru-

6

Listing 2: Sec. 2.2

// TreeGen.scala

def mkModuleVarDef(accessor: Symbol) = {

val mval = (

accessor.owner.newVariable(accessor.pos.focus, nme.moduleVarName(accessor.name))

setInfo accessor.tpe.finalResultType

setFlag (MODULEVAR)

)

mval.addAnnotation(AnnotationInfo(VolatileAttr.tpe, Nil, Nil))

if (mval.owner.isClass) {

mval setFlag (PRIVATE | LOCAL | SYNTHETIC)

mval.owner.info.decls.enter(mval)

}

ValDef(mval)

}

cial in connection with lazy vals (the condition of mkDoubleCheckedLocking() has
to access a volatile, the Int holding a bitmap). But that’s another story.

TODO Summarize where:

- cdef,

- the mod-var with type ModuleDef.symbol.info.finalResultType, and

- the getter

end up being added to.

Also: what the body of the getter is, which phases further process it.

Cheat-sheet:

- when the getter ends up in a trait,

it just consists of New of cdef, the module class.

- otherwise the getter consists of "{ lhs = rhs ; lhs }"

where ’rhs’ is as above and lhs is mod-var’s symbol.

2.3 An overridding module that has outer instance

TODO

/**

* -Y "Private" settings

*/

val overrideObjects = BooleanSetting ("-Yoverride-objects", "Allow member objects to be overridden.")

3 First lowering of lazy vals

refchecks does some rewriting for this construct, and lazyvals and mixin do
the rest.

Some background: the symbol of a lazy val has something called “lazyAccessor”
(a MethodSymbol, actually, while the surface-syntax construct has a TermSymbol):

/** For a lazy value, its lazy accessor. NoSymbol for all others. */

7

def lazyAccessor: Symbol = NoSymbol

Basically, makeLazyAccessor(tree, rhs): List[Tree] replaces the original
ValDef whose symbol.isLazy (whether owned by a class, object, method, or
block) by one of the shapes below. Similarly to the lowering of objects, the
original tree is not returned:

1. a lazy val of Unit type is replaced by a single “getter” whose symbol is
the lazyAccessor and whose body is the original rhs of the surface-syntax
construct.

TODO reachability of the symbol of the original ValDef afterwards

2. otherwise, a lazy val owned by a trait is replaced by a pair (ValDef,
getter) where

(a) an un-initialized ValDef is returned (different from the original one
but with its same symbol)

(b) the getter’s body is the rhs of the original ValDef. Its symbol is the
lazyAccessor.

So far, a reshuffling.

3. otherwise, a pair (ValDef, getter) is returned where

(a) the ValDef is as above.

(b) the getter’s body is of the form “{ lhs = rhs ; lhs }” where the lhs

points to the ValDef.

Also in this case, pretty much a reshuffling.

Common to all three codegen alternatives above is the emitted DefDef with a
lazyAccessor symbol (thus explaining the name of this tree builder, makeLazyAccessor()).
From now on, other trees will interact only with that getter to side-effect the
ValDef variable (if any).

4 Checks

TODO

8

	Intro
	Type rewriting

	Lowering of modules
	Top-level module
	A non-overridding module that has no outer instance
	An overridding module that has outer instance

	First lowering of lazy vals
	Checks

