
Lowering inner classes to nested classes

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

August 30th, 2011

Abstract

The explicitouter phase lowers inner classes into nested classes (rephras-
ing references to outer instances in the process). Not only can the follow-
ing phases forget about inner classes, they also need not worry about the
distinction nested vs. top-level (for an exception see lambdalift). Nested
classes, at least in forJVM mode, also go away: flatten goes after classes
whose symbol isNestedClass.

BTW, inner classes can refer (sneakily if you will) to type params or
member types of an enclosing class. This doesn’t matter in forJVM mode
because erasure will wallpaper over all that, but I’m mentioning this for
the attentive Scala.NET reader.

Additionally, explicitouter sets matchTranslation in motion to emit
code for pattern matching. That’s outside the scope of these notes.

phase name id description

---------- -- -----------

parser 1 parse source into ASTs, perform simple desugaring

namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects

typer 4 the meat and potatoes: type the trees

superaccessors 5 add super accessors in traits and nested classes

pickler 6 serialize symbol tables

refchecks 7 reference/override checking, translate nested objects

liftcode 8 reify trees

uncurry 9 uncurry, translate function values to anonymous classes

tailcalls 10 replace tail calls by jumps

specialize 11 @specialized-driven class and method specialization

/*---*/

explicitouter 12 this refs to outer pointers, translate patterns

/*---*/

erasure 13 erase types, add interfaces for traits

lazyvals 14 allocate bitmaps, translate lazy vals into lazified defs

lambdalift 15 move nested functions to top level

constructors 16 move field definitions into constructors

flatten 17 eliminate inner classes

mixin 18 mixin composition

cleanup 19 platform-specific cleanups, generate reflective calls

icode 20 generate portable intermediate code

inliner 21 optimization: do inlining

closelim 22 optimization: eliminate uncalled closures

dce 23 optimization: eliminate dead code

jvm 24 generate JVM bytecode

terminal 25 The last phase in the compiler chain

1

http://lamp.epfl.ch/~magarcia

Contents

1 Intro 3

2 Terminology 3
2.1 Outer param . 4
2.2 Outer field . 4
2.3 Outer accessor . 5
2.4 Looking up outer fields and accessors 6

3 Term rewriting 6
3.1 Utility methods . 6
3.2 Adding outer params . 8
3.3 Adding outer fields and outer accessors 8
3.4 Details on outer accessors for mixins 8
3.5 Path to outer instance . 10
3.6 Call to constructor of an inner class 10

4 Type rewritings done during term rewriting 11
4.1 Marking type symbols as public 12
4.2 Marking members accessed from inner classes as public 12

5 Type rewriting 13

2

Figure 1: ExplicitOuter, Sec. 1

1 Intro

As with any InfoTransform there are both term rewriting (performed in an
Transformer.transform() override) and type rewriting (in the form of symbol
info rewriting, realized by an InfoTransform.transformInfo() override).

In the case of ExplicitOuter, term rewriting relies on updated types (the
snippet below belongs to ExplicitOuterTransformer, Figure 1):

2 Terminology

• outer param: the constructor param receiving the outer instance, Sec. 2.1.

• outer field: a protected field to make the outer param available after
constructors have run, Sec. 2.2.

• outer accessor: a getter used internally to obtain the outer instance.
For traits, it’s abstract. In a non-trait class, its body picks the right outer
field (inherited or not). Details in Sec. 2.3.

3

2.1 Outer param

A piece of information that comes handy during term rewriting is the current
constructor’s param for the outer instance (outerParam for short). As shown
below, it’s defined inside instance constructors of inner classes except in any
class local to those constructors.

override def transform(tree: Tree): Tree = {

val savedOuterParam = outerParam

try {

tree match {

case Template(_, _, _) =>

outerParam = NoSymbol

case DefDef(_, _, _, vparamss, _, _) =>

if (tree.symbol.isClassConstructor && isInner(tree.symbol.owner)) {

outerParam = vparamss.head.head.symbol

assert(outerParam.name startsWith nme.OUTER, outerParam.name)

}

case _ =>

}

super.transform(tree)

}

finally outerParam = savedOuterParam

}

How come the ValDef for an outerParam is always there by the time this
override runs? As will be seen in Sec. 3.2, there’s an override of this override
that gets to run first, and in so doing adds the ValDef in question.

2.2 Outer field

Each non-trait inner class gets a protected field added for the outer instance,
unless the field’s contents would match one already declared in a superclass.
Two utility methods, hasOuterField(clazz: Symbol) and haveSameOuter() (dis-
cussed below) find out whether an outer field should be added or not. The name
of an outer field is fixed to:

val OUTER_LOCAL: NameType = "$outer " // note the space

not to be confused with the suffix for outer accessors (Sec. 2.3):

val OUTER: NameType = "$outer"

It’s easy to create input that makes the helper function haveSameOuter(parent:

Type, clazz: Symbol) indicate another outer field should be added (they are
distinguishable by their owner, having identical names). For example, for N

below, adding an outer field in addition to the outer field owned by I1 (because
I1 and N have different owners):

class O {

class I1

class I2 {

class N extends I1

}

}

4

Listing 1: Sec. 2.2

class I2 extends java.lang.Object with ScalaObject {

class N extends O#I1 with ScalaObject {

/*- not shown: another $outer field (whose type is O) that is inherited from I1. */

protected <synthetic> <paramaccessor> val $outer: O#I2 = _;

/*- the source class for this outer accessor is N,

therefore its return type is N’s owner. */

<synthetic> <stable> def O$I2$N$$$outer(): O#I2 = N.this.$outer;

def this($outer: O#I2): O#I2#N = {

if ($outer.eq(null))

throw new java.lang.NullPointerException()

else

N.this.$outer = $outer;

N.super.this($outer.O$I2$$$outer());

/*- above, an outer accessor is invoked

(returns O, the type of the owner of the source class for the invoked accessor).*/

()

}

};

protected <synthetic> <paramaccessor> val $outer: O = _;

<synthetic> <stable> def O$I2$$$outer(): O = I2.this.$outer;

def this($outer: O): O#I2 = {

if ($outer.eq(null))

throw new java.lang.NullPointerException()

else

I2.this.$outer = $outer;

I2.super.this();

()

}

};

After constructors has run (i.e., once code has been emitted to assign construc-
tor params to fields) the situation for I2 and N is depicted in Listing 1.

2.3 Outer accessor

Continuing with the same example, N has two outer accessors:

// inherited from I1, with source class I1:

<synthetic> <stable> def O$I1$$$outer() : O = I1.this.$outer;

// with source class N

<synthetic> <stable> def O$I2$N$$$outer(): O#I2 = N.this.$outer;

Good to know about outer accessors:

1. there’s one for each direct outer class (each base class a.k.a “sourceClass”
could in principle have its own direct outer class, that’s why the name of an
outer accessor is prefixed with the fully qualified name of the “sourceClass”).

2. Outer accessors are stable.

5

TODO Does stable imply final?

2.4 Looking up outer fields and accessors

Provided hasOuterField(clazz), a clazz is all that’s needed to find its outer
field:

private def outerField(clazz: Symbol): Symbol = {

val result = clazz.info.member(nme.OUTER_LOCAL)

assert(result != NoSymbol, "no outer field in "+clazz+" at "+phase)

result

}

The lookup story is only slightly longer for outer accessors. The name of an outer
accessor includes nme.OUTER as suffix (not to be confused with nme.OUTER_LOCAL

which names every outer field). However, no dedicated map is needed to keep
the correspondence class symbol → outer accessor symbol. Instead, lookup is
based on name, which can be univocally determined given the ‘base’ clazz:

/** The expanded name of ‘name‘ relative to this class ‘base‘ with given ‘separator‘ */

def expandedName(name: TermName, base: Symbol, separator: String = EXPAND_SEPARATOR_STRING): TermName =

newTermName(base.fullName(’$’) + separator + name)

Therefore, the ‘base’ clazz suffices as lookup key (well, almost always, sometimes
resorting to Symbol.outerSource):

def outerAccessor(clazz: Symbol): Symbol = {

val firstTry = clazz.info.decl(nme.expandedName(nme.OUTER, clazz))

if (firstTry != NoSymbol && firstTry.outerSource == clazz)

firstTry

else

clazz.info.decls find (_.outerSource == clazz) getOrElse NoSymbol

}

3 Term rewriting

Before delving into ExplicitOuterTransformer proper (Sec. 3.2 ff.) we look at
some of the utility methods it relies on (Sec. 3.1).

Figure 2 on p. 7 gives an overview of the classes involved in term rewriting.

3.1 Utility methods

OuterPathTransformer, the superclass of ExplicitOuterTransformer, factors out
utility methods also needed by LambdaLifter:

6

Figure 2: ExplicitOuterTransformer, Sec. 3

Besides keeping the OuterPathTransformer’s outerParam up-to-date, three
utility tree builders are provided, summarized below:

/** The first outer selection from currently transformed tree.

* The result is typed but not positioned.

*/

protected def outerValue: Tree =

if (outerParam != NoSymbol) ID(outerParam)

else outerSelect(THIS(currentClass))

/** Select and apply outer accessor from ’base’

* The result is typed but not positioned.

* If the outer access is from current class and current class is final

* take outer field instead of accessor

*/

private def outerSelect(base: Tree): Tree = {

. . .

}

/** The path

* <blockquote><pre>‘base’.$outer$$C1$outer$$Cn</pre></blockquote>

* which refers to the outer instance of class to of

* value base. The result is typed but not positioned.

*/

protected def outerPath(base: Tree, from: Symbol, to: Symbol): Tree = {

. . .

}

7

Figure 3: outerAccessorDef, Sec. 3.3

3.2 Adding outer params

case DefDef(mods, name, tparams, vparamss, tpt, rhs) =>

if (sym.isClassConstructor) {

val clazz = sym.owner

val vparamss1 =

if (isInner(clazz)) { /*- a constructor of non-trait inner class */

/*- symbol infos appear rewritten by now, that’s why the setInfo works */

val outerParam =

sym.newValueParameter(sym.pos, nme.OUTER) setInfo outerField(clazz).info

/*- updated first value-args list followed by remaining value-args lists */

((ValDef(outerParam) setType NoType) :: vparamss.head) :: vparamss.tail

} else vparamss

super.transform(treeCopy.DefDef(tree, mods, name, tparams, vparamss1, tpt, rhs))

} else

super.transform(tree)

3.3 Adding outer fields and outer accessors

Distilled from Listing 2 on p. 9:

• A non-trait inner class gets an outer field (see outerFieldDef).

• An inner class which is not an interface and is not static gets an outer
accessor (see outerAccessorDef, Figure 3 on p. 8). Please notice it returns
an abstract method for traits.

• A non-trait inner class can get for each class it mixes-in a mixin-outer-
accessor (see mixinOuterAccessorDef). Details in Sec. 3.4.

3.4 Details on outer accessors for mixins

Say we have a non-interface inner trait, e.g. T1 below:

8

Listing 2: Sec. 3.3

case Template(parents, self, decls) =>

val newDefs = new ListBuffer[Tree]

atOwner(tree, currentOwner) {

if (!currentClass.isInterface || (currentClass hasFlag lateINTERFACE)) {

if (isInner(currentClass)) {

if (hasOuterField(currentClass))

newDefs += outerFieldDef // (1a)

newDefs += outerAccessorDef // (1)

}

if (!currentClass.isTrait)

for (mc <- currentClass.mixinClasses)

if (outerAccessor(mc) != NoSymbol)

newDefs += mixinOuterAccessorDef(mc)

}

}

super.transform(

treeCopy.Template(tree, parents, self,

if (newDefs.isEmpty) decls else decls ::: newDefs.toList)

)

class O {

trait T1 { def doSthg(x: Any) = x.toString }

class I2 {

class N extends T1

}

}

Because AddInterfaces hasn’t run yet, there’s no distinction implClass-lateINTERFACE.
An abstract outer accessor gets added to the mixin by outerAccessorDef (Sec. 3.3):

abstract trait T1 extends java.lang.Object with ScalaObject {

def /*T1*/$init$(): Unit = {

()

};

def doSthg(x: Any): java.lang.String = x.toString();

<synthetic> <stable> def O$T1$$$outer(): O /*- abstract outer accessor */

};

And classes mixing-in that mixin get an implementation for it, added by mixinOuterAccessorDef

(which is depicted in Figure 4 on p. 10):

class N extends java.lang.Object with O.this.T1 with ScalaObject {

def this($outer: I2.this.type): I2.this.N = {

N.super.this();

()

};

protected <synthetic> <paramaccessor> val $outer: I2.this.type = _;

<synthetic> <stable> def O$I2$N$$$outer(): O.this.I2 = N.this.$outer;

/*- implementation for T1’s (a trait) outer accessor. */

<synthetic> <stable> def O$T1$$$outer(): O =

N.this.O$I2$N$$$outer().O$I2$$$outer().asInstanceOf[O]()

9

Figure 4: mixinOuterAccessorDef, Sec. 3.4

};

3.5 Path to outer instance

Quoting from the SLS:

The expression C.this is legal in the statement part of an enclosing
class or object definition with simple name C. It stands for the object
being defined by the innermost such definition. If the expression’s
expected type is a stable type, or C.this occurs as the prefix of a
selection, its type is C.this.type, otherwise it is the self type of class
C.

A reference C.this where C refers to an outer class is replaced by a selection
this.$outer$$C1$outer$$Cn

case This(qual) =>

if (sym == currentClass || sym.hasModuleFlag && sym.isStatic) tree

else atPos(tree.pos)(outerPath(outerValue, currentClass.outerClass, sym)) // (5)

One thing to note is the array of “is-static-something” inspectors on Symbol

(Listing 3). Another thing to note is how to compose a path to the target outer
instance, given its class and the currentClass. That means making sense of:

outerPath(outerValue, currentClass.outerClass, sym)

TODO Explain why the symbols for path components are there by the time the path is built.

3.6 Call to constructor of an inner class

Two cases may arise:

10

Listing 3: Sec. 4.2

/** Is this symbol a module variable?

* This used to have to test for MUTABLE to distinguish the overloaded

* MODULEVAR/SYNTHETICMETH flag, but now SYNTHETICMETH is gone.

*/

final def isModuleVar = hasFlag(MODULEVAR)

/** Is this symbol static (i.e. with no outer instance)? */

final def isStatic: Boolean = hasFlag(STATIC) || isRoot || owner.isStaticOwner

/** Is this symbol a static constructor? */

final def isStaticConstructor: Boolean = isStaticMember && isClassConstructor

/** Is this symbol a static member of its class? (i.e. needs to be implemented as a Java static?) */

final def isStaticMember: Boolean = hasFlag(STATIC) || owner.isImplClass

/** Does this symbol denote a class that defines static symbols? */

final def isStaticOwner: Boolean = isPackageClass || isModuleClass && isStatic

1. an inner-class constructor (either primary or auxiliary) invokes an auxil-
iary constructor

2. otherwise (in this case, the “receiver” of the invocation denotes the outer
instance)

In both cases, the list of actual arguments is extended by prefixing an ex-
pression denoting the outer instance. In the first case, such outer instance
is given by the outer param of the invoker. Otherwise it can be obtained from
the type (necessarily a singleton type) of the qualifier qual in the invocation
“Apply(sel @ Select(qual, nme.CONSTRUCTOR), args)”.

Well, the above conveys the idea minus a few details for the second case. To
close that loophole, its source comment is reproduced next:

A call to a constructor Q.<init>(args) or Q.$init$(args) where Q !=

this and the constructor belongs to a non-static class is augmented
by an outer argument. E.g. Q.<init>(OUTER, args) where OUTER is
the qualifier corresponding to the singleton type Q

The source code of the rewriting (covering both cases) appears in Listing 4 on
p. 12.

4 Type rewritings done during term rewriting

In a way, these rewritings are about types (and can only keep the program well-
typed), but are performed during term rewriting (i.e., in ExplicitOuterTransformer.transform()):

1. Marking type symbols as public, Sec. 4.1.

2. Marking members accessed from inner classes as public, Sec. 4.2.

11

Listing 4: Sec. 3.6

case Apply(sel @ Select(qual, nme.CONSTRUCTOR), args) if isInner(sel.symbol.owner) =>

val outerVal = atPos(tree.pos)(qual match {

// it’s a call between constructors of same class

case _: This =>

assert(outerParam != NoSymbol)

ID(outerParam)

case _ =>

gen.mkAttributedQualifier(qual.tpe.prefix match {

case NoPrefix => sym.owner.outerClass.thisType

case x => x

})

})

super.transform(treeCopy.Apply(tree, sel, outerVal :: args))

TODO What does the following do? (in the catch-all handler of the term transform)

val x = super.transform(tree)

if (x.tpe eq null) x

else x setType transformInfo(currentOwner, x.tpe)

4.1 Marking type symbols as public

TODO Looks like this rewriting is unrelated to inner classes. Could it be performed in another phase?.

TODO Perhaps this guarantees those type symbols can be used as type arguments anywhere,

so that they always comply with "Bounds on type params cannot be less visible than the type param’s owner itself."

Really? Is that the reason?

4.2 Marking members accessed from inner classes as public

These rewritings are a concession to flatten, or better said to the JVM. In
contrast, on the CLI, nested classes enjoy privileged access to their nesting
classes and their members.

• Remove private modifier from class members M that are accessed from an
inner class.

• Remove protected modifier from class members M that are accessed (with-
out a super qualifier) from an inner class or trait.

12

Figure 5: TypeWrapper hierarchy

• Remove private modifiers from members of traits. A caveat: unlike the
other items, this one is also necessary in Scala.NET: trait members may
result in implClass members, which are going to be accessed from other
classes.

TODO What about protected members in traits, then? (TODO ticket examples?).

case Select(qual, name) =>

if (currentClass != sym.owner) // (3)

sym.makeNotPrivate(sym.owner)

val qsym = qual.tpe.widen.typeSymbol

if (sym.isProtected && //(4)

(qsym.isTrait || !(qual.isInstanceOf[Super] || (qsym isSubClass currentClass))))

sym setFlag notPROTECTED

super.transform(tree)

makeNotPrivate does more than setFlag(notPRIVATE) on sym. And why does
sym.owner appear as argument anyway? Figure 4.2 on p. 12.

5 Type rewriting

1. During MethodType rewriting (Listing 5 on p. 14):

(a) Make all super accessors and modules in traits non-private, mangling
their names.

(b) Add an outer parameter to the formal parameters of a constructor
in a non-trait inner class;

(c) Remove protected flag from all members of traits.

2. During ClassInfoType rewriting (Listing 6 on p. 15):

(a) Add an outer accessor to every inner class that is not an interface.
The added outer accessor is abstract for traits, concrete otherwise
(term rewriting will add the method body).

13

Listing 5: Sec. 5

def transformInfo(sym: Symbol, tp: Type): Type = tp match {

case MethodType(params, restpe1) =>

val restpe = transformInfo(sym, restpe1)

if (sym.owner.isTrait && ((sym hasFlag (ACCESSOR | SUPERACCESSOR)) || sym.isModule)) { // 5

/*- Make all super accessors and modules in traits non-private, mangling their names. */

sym.makeNotPrivate(sym.owner)

}

/*- Remove protected flag from all members of traits.*/

if (sym.owner.isTrait) sym setNotFlag PROTECTED // 6

val res =

if (sym.isClassConstructor && isInner(sym.owner)) { // 1

/*- result 1 of 3 */

/*- Add an outer parameter to the formal parameters of a constructor in a inner non-trait class */

val p = sym.newValueParameter(sym.pos, "arg" + nme.OUTER)

.setInfo(sym.owner.outerClass.thisType)

MethodType(p :: params, restpe)

} else if (restpe ne restpe1)

/*- result 2 of 3 */

MethodType(params, restpe)

else

/*- result 3 of 3 */

tp

res

(b) Add a protected outer field to a non-trait inner class.

(c) Also add overriding accessor defs to every class that inherits mixin
classes with outer accessor defs (unless the superclass already inherits
the same mixin).

Two more type rewritings that don’t fit in the above classification:

case PolyType(tparams, restp) =>

val restp1 = transformInfo(sym, restp)

if (restp eq restp1) tp else PolyType(tparams, restp1)

case _ =>

// Local fields of traits need to be unconditionally unprivatized.

// Reason: Those fields might need to be unprivatized if referenced by an inner class.

// On the other hand, mixing in the trait into a separately compiled

// class needs to have a common naming scheme, independently of whether

// the field was accessed from an inner class or not. See #2946

if (sym.owner.isTrait && sym.hasLocalFlag &&

(sym.getter(sym.owner.toInterface) == NoSymbol))

sym.makeNotPrivate(sym.owner)

tp

14

Listing 6: Sec. 5

case ClassInfoType(parents, decls, clazz) =>

var decls1 = decls

if (isInner(clazz) && !clazz.isInterface) {

/*- Add an outer accessor to every inner class that is not an interface.

* The added outer accessor is abstract for traits,

* concrete otherwise (term rewriting will add the method body).

*/

decls1 = decls.cloneScope

val outerAcc = clazz.newMethod(clazz.pos, nme.OUTER) // 3

outerAcc expandName clazz

val restpe = if (clazz.isTrait) clazz.outerClass.tpe else clazz.outerClass.thisType

decls1 enter (clazz.newOuterAccessor(clazz.pos) setInfo MethodType(Nil, restpe))

if (hasOuterField(clazz)) { //2

/*- Add a protected outer field to a non-trait inner class.*/

val access = if (clazz.isFinal) PRIVATE | LOCAL else PROTECTED

decls1 enter (

clazz.newValue(clazz.pos, nme.OUTER_LOCAL)

setFlag (SYNTHETIC | PARAMACCESSOR | access)

setInfo clazz.outerClass.thisType

)

}

}

if (!clazz.isTrait && !parents.isEmpty) {

/*- Also add overriding accessor defs to every class that inherits

* mixin classes with outer accessor defs

* (unless the superclass already inherits the same mixin).

*/

for (mc <- clazz.mixinClasses) {

val mixinOuterAcc: Symbol = atPhase(phase.next)(outerAccessor(mc))

if (mixinOuterAcc != NoSymbol) {

if (decls1 eq decls) decls1 = decls.cloneScope

val newAcc = mixinOuterAcc.cloneSymbol(clazz)

newAcc resetFlag DEFERRED setInfo (clazz.thisType memberType mixinOuterAcc)

decls1 enter newAcc

}

}

}

/*- end result */

if (decls1 eq decls) tp else ClassInfoType(parents, decls1, clazz)

15

	Intro
	Terminology
	Outer param
	Outer field
	Outer accessor
	Looking up outer fields and accessors

	Term rewriting
	Utility methods
	Adding outer params
	Adding outer fields and outer accessors
	Details on outer accessors for mixins
	Path to outer instance
	Call to constructor of an inner class

	Type rewritings done during term rewriting
	Marking type symbols as public
	Marking members accessed from inner classes as public

	Type rewriting

