
Type erasure in Scala for JVM

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

August 26th, 2011

Abstract

The erasure phase consists of several moving parts. We review how:

• the custom re-typer (Eraser) and

• a TypingTransformer (PreTransformer)

put trees in good shape so that they can emerge well-typed from the
erasure phase. In addition to Eraser and “atPhase(phase.next)”, re-
typing involves “transformInfo”. Also related, another write-up covers
AddInterfaces1.

phase name id description

---------- -- -----------

parser 1 parse source into ASTs, perform simple desugaring

namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects

typer 4 the meat and potatoes: type the trees

superaccessors 5 add super accessors in traits and nested classes

pickler 6 serialize symbol tables

refchecks 7 reference/override checking, translate nested objects

liftcode 8 reify trees

uncurry 9 uncurry, translate function values to anonymous classes

tailcalls 10 replace tail calls by jumps

specialize 11 @specialized-driven class and method specialization

explicitouter 12 this refs to outer pointers, translate patterns

/*---*/

erasure 13 erase types, add interfaces for traits

/*---*/

lazyvals 14 allocate bitmaps, translate lazy vals into lazified defs

lambdalift 15 move nested functions to top level

constructors 16 move field definitions into constructors

flatten 17 eliminate inner classes

mixin 18 mixin composition

cleanup 19 platform-specific cleanups, generate reflective calls

icode 20 generate portable intermediate code

inliner 21 optimization: do inlining

closelim 22 optimization: eliminate uncalled closures

dce 23 optimization: eliminate dead code

jvm 24 generate JVM bytecode

terminal 25 The last phase in the compiler chain

1http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q3/

AddInterfaces.pdf

1

http://lamp.epfl.ch/~magarcia
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q3/AddInterfaces.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q3/AddInterfaces.pdf

Contents

1 Eraser, the modifier typer that retypes and adapts trees on the fly 3
1.1 adaptToType() . 3
1.2 adaptMember() . 5

1.2.1 Any.asInstanceOf[AnyVal] same-thing-as unbox adapted receiver 6
1.2.2 Adapt Selects: due to Any member, due to boxing mismatch,

and in a few other cases too . 6
1.2.3 Remove SelectFromArray . 7

2 PreTransformer, or the art of preparing trees for Eraser 7
2.1 All pre-erase transforms except those on Apply nodes 8

2.1.1 Type applications . 9
2.1.2 Sidenote: <array>.asInstanceOf[<BlaBla>] 10

2.2 Pre-erasing Apply nodes . 10
2.2.1 Rewrite isInstanceOf[generic-array-type] 11
2.2.2 Member selections (incl. constructor) on arrays (generic or not) 12
2.2.3 Rewrite calls to ## and getClass on Any and Object 13
2.2.4 Rewriting (some) type casts . 13
2.2.5 Reduce type-testing for singleton and for refined types 14
2.2.6 ApplyDynamic . 15

2.3 Explore whether some Apply rewritings can be performed before erasure 15

3 Putting it all together: type erasure for JVM 15
3.1 Stage 1: transformInfo . 16
3.2 Stage 2: def erasure(sym: Symbol, tp: Type): Type 17
3.3 Stage 3: the ErasureMap TypeMap . 17
3.4 Stage 4: the Eraser custom modifier typer 20

4 Background 20
4.1 The transformInfo story . 20
4.2 The different methods for type testing 20
4.3 Type testing on member types . 21
4.4 What PolyType means . 22
4.5 Examples (before erasure) . 22
4.6 Intersection dominator . 22
4.7 Examples (after erasure) . 23

2

Figure 1: Sec. 1

1 Eraser, the modifier typer that retypes and
adapts trees on the fly

Eraser is a custom typer that receives “pre-erased” trees (Sec. 2) and does two
things with them:

1. inserts casting, boxing, and unboxing operations.

2. types them, via

• functionality inherited from Typer, and

• custom setType on tree nodes.

In order to simplify the presentation, some anonymous classes have been
given names, and methods moved from their original enclosing class into the
nearest enclosing class where they are used (PreTransformer or Eraser). With
that Erase and ErasureTransformer become slimmer. Also for readability, the
erasure phase can be uncluttered by creating a trait PrepareJavaSig with the
contents depicted in Figure 1.

The resulting structure of Eraser is depicted in Figure 2.
The two main tools at Eraser’s disposal (adaptToType() and adaptMember())

are discussed in Sec. 1.1 and Sec. 1.2 resp.

1.1 adaptToType()

1. inserts boxing, unboxing, and cast ops to make the incoming tree.tpe

conform to the expected type,

2. wraps in a zero-args Apply the invocation of a nullary method (a situation
detected via “tree.tpe.isInstanceOf[MethodType] && tree.tpe.params.isEmpty”)

Because adaptToType expects its first argument to be typed, recursive in-
vocations with a different (usually, boxed or casted) tree have to fulfill that

3

Figure 2: Sec. 1

4

precondition, i.e. the utility methods box, unbox, and cast should type trees
before returning them.

In more detail, “based on the incoming tree.tpe and the expected type”
means that the those Type instances are compared using:

• isValueClass(sym: Symbol)

• def <:<(that: Type): Boolean

/** Adapt ‘tree‘ to expected type ‘pt‘.

*

* @param tree the given tree

* @param pt the expected type

* @return the adapted tree

*/

private def adaptToType(tree: Tree, pt: Type): Tree = {

if (settings.debug.value && pt != WildcardType)

log("adapting " + tree + ":" + tree.tpe + " : " + tree.tpe.parents + " to " + pt)//debug

if (tree.tpe <:< pt) /*- already well-typed, do nothing. */

tree

else if (isValueClass(tree.tpe.typeSymbol) && !isValueClass(pt.typeSymbol)) {

/*- box before type-adapting */

adaptToType(box(tree), pt)

} else if (tree.tpe.isInstanceOf[MethodType] && tree.tpe.params.isEmpty) {

/*- wraps in a zero-args Apply the invocation of a nullary method */

assert(tree.symbol.isStable, "adapt "+tree+":"+tree.tpe+" to "+pt)

adaptToType(Apply(tree, List()) setPos tree.pos setType tree.tpe.resultType, pt)

} else if (pt <:< tree.tpe) /*- downcast to expected type */

cast(tree, pt)

else if (isValueClass(pt.typeSymbol) && !isValueClass(tree.tpe.typeSymbol)) {

/*- unbox before type-adapting */

adaptToType(unbox(tree, pt), pt)

} else /*- downcast to expected type */

cast(tree, pt)

}

1.2 adaptMember()

Eraser.adaptMember() performs three kinds of rewritings:

1. A cast of Any into a Scala value class is equivalent to unboxing of an
adapted qualifier, Sec. 1.2.1.

2. After erasure, ASTs will be devoid of references to Any or AnyVal (the
“phantom types”). This requires adapting Selects: due to Any member,
due to boxing mismatch, and in a few other cases too. Details in Sec. 1.2.2.

3. recover “non-erased” type to desugar SelectFromArray trees, Sec. 1.2.3.

TODO Confirm:

‘‘After erasure, ASTs will be devoid of references to Any or AnyVal (the "phantom types")’’.

What about Any_equals?

5

1.2.1 Any.asInstanceOf[AnyVal] same-thing-as unbox adapted receiver

The trees for type tests and casts (unlike all other type applications) were left
in place by PreTransformer.preErase() (Sec. 2.1.1). It’s true that their tpe was
set to null right after that invocation in PreTransformer.transform(), but that’s
another story.

Regarding the type argument, back in PreTransformer.preErase() class lit-
erals were rewritten into their erasure, and by now its tpe is not null.

As the snippet below shows, whenever the type-arg is a Scala value class a
rewriting is performed that elides the type cast yet preserves semantics. Other-
wise the original asInstanceOf tree is left as-is.

• We’re in the case <some-Any-value>.asInstaceOf[<value-class-V>]:

1. The receiver of the type cast is re-typed with an expected type of
ObjectClass.tpe, which results in a new receiver (“boxing of the orig-
inal receiver”).

2. An unbox invocation into the value class denoted by the type-arg is
emitted taking the new receiver as input.

3. Summing up, the emitted “unboxToV(box(receiver))” allows preserv-
ing semantics upon eliding the type-cast:

– the unbox-box composition will succeed iff the original receiver
has a runtime value of the given <value-class-V> .

– in particular, when the original receiver evaluates to null, a non-
null AnyRef, or some non-V valueclass, the unboxToV will fail.

case Apply(TypeApply(sel @ Select(qual, name), List(targ)), List())

if tree.symbol == Any_asInstanceOf =>

val targClass = targ.tpe.typeSymbol

if (isValueClass(targClass)) {

val qual1 = typedQualifier(qual, NOmode, ObjectClass.tpe) // need to have an expected type, see #3037

unbox(qual1, targ.tpe)

} else tree

TODO The snippet above was cleaned up a bit from the version in trunk.

1.2.2 Adapt Selects: due to Any member, due to boxing mismatch,
and in a few other cases too

In order to get rid of references to members of Any or AnyVal (the “phantom
types”) it’s necessary to replace a Select (or adapt its receiver) in the following
situations:

(1) Rewrite Select of an Any member (except constructor) to reference its Object counterpart:

(a) x.asInstanceOf[T] on Any becomes x.$asInstanceOf[T] with $asInstanceOf in class Object.

(b) x.isInstanceOf[T] on Any becomes x.$isInstanceOf[T] with $isInstanceOf in class Object.

(c) x.m where m is some other member of Any becomes x.m where m is a member of class Object.

This includes in particular:

(c.I) ‘x == y‘ for == on Any becomes ‘x equals y‘ with equals in class Object.

(c.II) ‘x != y‘ for != on Any becomes ‘!(x equals y)‘ with equals in class Object.

6

(2) Rewrite remaining Selects in two steps:

Firstly, adapt (in some cases) the receiver (aka "qualifier") based on its erased tpe:

(1st-a) "boxed expected"

x.m where x has unboxed value type T, and

m is not a directly translated member of T

becomes T.box(x).m

(1st-b) "unboxed expected"

x.m where x is a reference type, and

m is a directly translated member of value type T

becomes x.TValue().m

Secondly, "adapt the selector" if needed (below, ‘y‘ is the result of adapting ‘x‘ as above):

(2nd-a) y.m where y is a boxed type, and

m is a member of an unboxed class

becomes y.n where n is the corresponding member of the boxed class.

(2nd-b) y.m where m is nullary method

becomes y.m()

(2nd-c) y.m where /*- TODO */

becomes /*- TODO */

1.2.3 Remove SelectFromArray

The first part of the “SelectFromArray duet” was performed in one of the pre-
erase Apply transforms (Sec. 2.2.2) and the second part is performed here.

/**

* (adapt-member 3) SelectFromArray is used only during erasure, it’s time to remove it.

*

* The comment in @see PreTransformer.preEraseApply (where SelectFromArray trees are introduced) reads:

* "store exact array erasure in map to be retrieved later when we might need to do the cast in adaptMember"

*

*/

case SelectFromArray(qual, name, erasure) =>

var qual1 = typedQualifier(qual)

if (!(qual1.tpe <:< erasure)) qual1 = cast(qual1, erasure)

Select(qual1, name) copyAttrs tree

2 PreTransformer, or the art of preparing trees
for Eraser

Although PreTransformer (Figure 3) runs before Eraser, discussing them in the
opposite order (as done in this write-up) allows highlighting those places in
Eraser where some pre-processing (on the part of PreTransformer) is expected
before “it’s too late”. We’ve seen the following examples, amongst others:

• SelectFromArray

/**

* (adapt-member 3) SelectFromArray is used only during erasure, it’s time to remove it.

*

* The comment in @see PreTransformer.preEraseApply (where SelectFromArray trees are introduced) reads:

* "store exact array erasure in map to be retrieved later when we might need to do the cast in adaptMember"

*

7

Figure 3: Sec. 2

*/

• handling of invocations to ## and getClass on Any and Object in preEraseApply

// Methods on Any/Object which we rewrite here while we still know

// what is a primitive and what arrived boxed.

2.1 All pre-erase transforms except those on Apply nodes

Not that the following tells anything new over previous write-ups, but the layout
is more readable now. Please convince yourself:

PreTransformer.preErase() does most of the work that PreTransformer is
credited for. What else does PreTransformer do? Just some tpe-nullifying in
anticipation of the retyping by Eraser. To recap:

override def transform(tree: Tree): Tree = {

if (tree.symbol == ArrayClass && !tree.isType)

tree

else {

val tree1 = preErase(tree)

tree1 match {

case EmptyTree | TypeTree() =>

tree1 setType erasure(NoSymbol, tree1.tpe)

case DefDef(_, _, _, _, tpt, _) =>

val result = super.transform(tree1) setType null

tpt.tpe = erasure(tree1.symbol, tree1.symbol.tpe).resultType

8

result

case _ =>

super.transform(tree1) setType null

}

}

}

Back to preErase(). It transforms a single node as described below, without
recursing into children (yes, that also holds for those TypeApply transforms where
the receiver is pre-erased, because in that case that child node is the single node
being transformed, its containing node is discarded).

1. Erasure of type params

• Remove all type parameters in class and method definitions.

• Remove all abstract and alias type definitions.

Note: EmptyTrees are emitted for TypeDef but removed in Transformer.transformStats()

(which is invoked for the stmts in PackageDef, Template, and Block).

2. Remove all type applications other than type tests and casts. Details in
Sec. 2.1.1. This has to do with casting of arrays, as discussed in Sec. 2.1.2.

3. Pre-erase Apply applications. This is delegated to preEraseApply(), Sec. 2.2

4. Corner case: Given a selection q.s, where the owner of s is not ac-
cessible but the type symbol of q’s type qT is accessible, insert a cast
“q.asInstanceOf[qT].s”. This prevents illegal access errors (see #4283).

5. Template-level transforms:

• Check that there are no double definitions in a template.

• Add bridge definitions to a template.

6. Remember the non-erased tpe of a match selector, rewrite class literals
into their erasure.

2.1.1 Type applications

As a warm-up, let’s dissect the realization of “remove all type applications other
than type tests and casts”:

/* pre-era (2): remove all type applications other than type tests and casts */

case TypeApply(fun, args) if (fun.symbol.owner != AnyClass &&

fun.symbol != Object_asInstanceOf &&

fun.symbol != Object_isInstanceOf) =>

preErase(fun)

The condition above on fun.symbol, given the pattern TypeApply(fun, args),
prevent all type tests and casts from being erased. In detail, “fun.symbol.owner
!= AnyClass” is shorthand for the more explicit

fun.symbol != Any_isInstanceOf &&

fun.symbol != Any_asInstanceOf

9

Because Any_getClass takes no type-params it won’t appear inside a TypeApply.
Note: Some type applications are removed before reaching here. For ex-

ample, preEraseApply() rewrites into ApplyDynamic, including those invocations
giving explicit type arguments, and in so doing removes the type application
(Sec. 2.2.6).

2.1.2 Sidenote: <array>.asInstanceOf[<BlaBla>]

Briefly:

• Casting arrays requires no rewriting (this subsection). Sec. 2.2.4 discusses
the few cases where asInstanceOf rewritings are performed.

• Type-testing of array values may require rewriting (Sec. 2.2.1).

At this point I couldn’t resist cut & pasting form the spec:

First, unlike arrays in Java or C#, arrays in Scala are not co-
variant. That is, S <: T does not imply Array[S] <: Array[T]

in Scala. However, it is possible to cast an array of S to an ar-
ray of T if such a cast is permitted in the host environment. For
instance Array[String] does not conform to Array[Object], even
though String conforms to Object. However, it is possible to cast
an expression of type Array[String] to Array[Object], and this cast
will succeed without raising a ClassCastException. Example:

val xs = new Array[String](2)

// val ys: Array[Object] = xs // **** error: incompatible types

val ss = new Array[String](2)

def f[T](xs: Array[T]): Array[String] =

if (xs.isInstanceOf[Array[String]]) xs.asInstanceOf[Array[String])

else throw new Error("not an instance")

f(ss) // returns ss

2.2 Pre-erasing Apply nodes

To recap, we extracted from preErase() (Sec. 2.1) all those rewritings of Apply

nodes, putting them together in preEraseApply() which is described in this
section.

These rewritings comprise six subcases, each of them deserving its own sub-
sub-section (Sec. 2.2.1 to Sec. 2.2.6).

1. Rewrite type-tests on generic arrays.

2. Rewrite member selections (including constructor) on arrays:

(a) Rewrite calls to apply/update/length/clone on generic arrays

(b) Do the pre-erase part of the SelectFromArray duet, the 2nd part done
by adaptMember()

3. Two methods on Any and Object (## and getClass) are rewritten while
we still know what is a primitive and what arrived boxed.

10

Figure 4: Sec. 2.2.1

4. (a) Elide a type cast statically known to succeed, or
(b) Enforce numeric-conversion semantics.

5. (a) Rewrite type tests against singleton types, or
(b) Optimize type tests against RefinedType.

6. Make dynamic applications explicit, removing any type application in the
process.

Background: Type tests and casts were exempted when removing type applica-
tions (PreTransformer.preErase(), Sec. 2.1.1).

• Type tests are rewritten as discussed in Sec. 2.2.1 and Sec. 2.2.5

• Type casts are rewritten as discussed in Sec. 2.2.4

2.2.1 Rewrite isInstanceOf[generic-array-type]

Informally, a “generic-array-type” is an array type with a (nested) parameter-
ized component type. The rewriting shown in Figure 4 acts on trees of the form
isInstanceOf[Array[X]] where

1. X is a type param (in general, an abstract type), or

2. X is of the form Array[X], and so on recursively.

Compare before and after erasure:

1. Before

11

def iaOfChar(arg: Any): Boolean = arg.isInstanceOf[Array[Char]]();

def iaOfT[T](arg: Any): Boolean = arg.isInstanceOf[Array[T]]();

def iaOfaOfT[T](arg: Any): Boolean = arg.isInstanceOf[Array[Array[T]]]();

2. After

def iaOfChar(arg: java.lang.Object): Boolean =

arg.$isInstanceOf[Array[Char]]();

def iaOfT(arg: java.lang.Object): Boolean =

runtime.this.ScalaRunTime.isArray(arg, 1);

def iaOfaOfT(arg: java.lang.Object): Boolean =

arg.$isInstanceOf[Array[java.lang.Object]]().&&(runtime.this.ScalaRunTime.isArray(arg, 2));

The target of that desugaring lives in scala.runtime.ScalaRunTime:

2.2.2 Member selections (incl. constructor) on arrays (generic or
not)

1. Rewrite calls to apply/update/length/clone on generic arrays.
Example: genarr(i) = iter.next()

becomes: scala.runtime.ScalaRunTime.array_update(genarr, i, iter.next())

2. Temporarily wrap the receiver (thus preserving its non-erased tpe) of a
Select on non-generic array (ie. of an <init>/apply/update/length/clone
on the qualifier) because only at adaptMember-time (Sec. 1.2.3) can be
known whether a down-cast from the original tpe to the erased type is
needed.

In case the above isn’t clear enough, here goes the source code:

case Apply(fn @ Select(qual, name), args) if (fn.symbol.owner == ArrayClass) =>

if (unboundedGenericArrayLevel(qual.tpe.widen) == 1)

// convert calls to apply/update/length/clone on generic arrays to

// calls of ScalaRunTime.array_xxx method calls

global.typer.typedPos(tree.pos) { gen.mkRuntimeCall("array_"+name, qual :: args) }

else

// store exact array erasure in map to be retrieved later when we might

12

// need to do the cast in adaptMember

treeCopy.Apply(

tree,

SelectFromArray(qual, name, erasure(tree.symbol, qual.tpe)).copyAttrs(fn),

args)

2.2.3 Rewrite calls to ## and getClass on Any and Object

Two methods on Any and Object (## and getClass) are rewritten as follows (while
we still know what is a primitive and what arrived boxed):

• implement semantics of ## for null and Unit

• rewrite v.getClass (where v is value of Scala value class) into
scala.runtime.ScalaRunTime.anyValClass(v) whose source comment reads:

Return the class object representing an unboxed value type, e.g. classOf[Int],
not classOf[java.lang.Integer]. The compiler rewrites expres-
sions like 5.getClass to come here.

/*- pre-era-apply (3) */

case Apply(fn @ Select(qual, _), Nil) if interceptedMethods(fn.symbol) =>

if (fn.symbol == Any_## || fn.symbol == Object_##) {

// This is unattractive, but without it we crash here on ().## because after

// erasure the ScalaRunTime.hash overload goes from Unit => Int to BoxedUnit => Int.

// This must be because some earlier transformation is being skipped on ##, but so

// far I don’t know what. For null we now define null.## == 0.

qual.tpe.typeSymbol match {

case UnitClass | NullClass => LIT(0)

case IntClass => qual

case s @ (ShortClass | ByteClass | CharClass) => numericConversion(qual, s)

case BooleanClass => If(qual, LIT(true.##), LIT(false.##))

case _ =>

global.typer.typed(gen.mkRuntimeCall(nme.hash_, List(qual)))

}

}

// Rewrite 5.getClass to ScalaRunTime.anyValClass(5)

else if (isValueClass(qual.tpe.typeSymbol))

global.typer.typed(gen.mkRuntimeCall(nme.anyValClass, List(qual)))

else

tree

2.2.4 Rewriting (some) type casts

Quoting from the SLS, §12.1:

The test x.asInstanceOf[T] is treated specially if T is a numeric value
type (§12.2). In this case the cast will be translated to an application
of a conversion method x.toT (§12.2.1). For non-numeric values x
the operation will raise a ClassCastException.

/*- pre-era-apply (4) */

case Apply(fn, args) if (fn.symbol == Any_asInstanceOf) =>

(fn: @unchecked) match {

13

case TypeApply(Select(qual, _), List(targ)) =>

if (qual.tpe <:< targ.tpe)

/*- eliding a type test statically known to succeed */

atPos(tree.pos) { Typed(qual, TypeTree(targ.tpe)) }

else if (isNumericValueClass(qual.tpe.typeSymbol) && isNumericValueClass(targ.tpe.typeSymbol))

/*- numeric-conversion semantics */

atPos(tree.pos)(numericConversion(qual, targ.tpe.typeSymbol))

else

/*- let the backend enforce semantics :-) */

tree

}

2.2.5 Reduce type-testing for singleton and for refined types

Type tests on generic arrays are matched by a preceding case clause (Sec. 2.2.1).
All other Any_isInstanceOf tests are matched here, but only some are rewritten:

• type tests against singleton types are rewritten into equality tests:

// todo: also handle the case where the singleton type is buried in a compound

case SingleType(_, _) | ThisType(_) | SuperType(_, _) =>

val cmpOp = if (targ.tpe <:< AnyValClass.tpe) Any_equals else Object_eq

atPos(tree.pos) {

Apply(Select(qual, cmpOp), List(gen.mkAttributedQualifier(targ.tpe)))

}

• Intersection types of the RefinedType variety involve individual type-tests
some of which may be statically known to succeed, those are elided, the re-
maining ones are rewritten from Any_isInstanceOf to use Object_isInstanceOf

instead.

– The differences between those methods can be seen in Sec. 4.2.

– adaptMember() performs that rewriting a lot (Sec. 1.2.2).

case RefinedType(parents, decls) if (parents.length >= 2) =>

// Optimization: don’t generate isInstanceOf tests if the static type

// conforms, because it always succeeds. (Or at least it had better.)

// At this writing the pattern matcher generates some instance tests

// involving intersections where at least one parent is statically known true.

// That needs fixing, but filtering the parents here adds an additional

// level of robustness (in addition to the short term fix.)

val parentTests = parents filterNot (qual.tpe <:< _)

if (parentTests.isEmpty) Literal(Constant(true))

else gen.evalOnce(qual, currentOwner, unit) { q =>

atPos(tree.pos) {

parentTests map mkIsInstanceOf(q) reduceRight gen.mkAnd

}

}

• otherwise leave the type-test as-is.

14

2.2.6 ApplyDynamic

Make dynamic applications easier to detect by wrapping them in a dedicated
node, removing any type application in the process. cleanup will lower them
into cache-supported reflective calls.

/*- pre-era-apply (6) */

case Apply(fn, args) =>

{

def doDynamic(fn: Tree, qual: Tree): Tree = {

if (fn.symbol.owner.isRefinementClass && !fn.symbol.isOverridingSymbol)

ApplyDynamic(qual, args) setSymbol fn.symbol setPos tree.pos

else tree

}

fn match {

case Select(qual, _) => doDynamic(fn, qual)

case TypeApply(fni@Select(qual, _), _) =>

doDynamic(fni, qual)// type parameters are irrelevant in case of dynamic call

case _ => tree

}

}

2.3 Explore whether some Apply rewritings can be per-
formed before erasure

TODO

It may be useful to explore whether some of the rewritings for Apply nodes
can be performed in a phase of its own before erasure, i.e. in a phase whose
typing doesn’t rely on Erasure.transformInfo.

From the six rewritings listed in Sec. 2.2, three are clear candidates (listed
below). Perhaps there are more.

• Two methods on Any and Object (## and getClass) are rewritten while
we still know what is a primitive and what arrived boxed. Sec. 2.2.3

• (a) Elide a type cast statically known to succeed, or
(b) Enforce numeric-conversion semantics. Sec. 2.2.4

• (a) Rewrite type tests against singleton types, or
(b) Optimize type tests against RefinedType. Sec. 2.2.5

Caveat: in two occassions preEraseApply sets erased types on trees it emits.
If done before erasure, non-erased types should be used instead.

3 Putting it all together: type erasure for JVM

Computing a forJVM-erased-type is like a pipeline:

1. def transformInfo(sym: Symbol, tp: Type): Type

An InfoTransform override in Erasure. It interceps a few cases (Sec. 3.1)
(thus special casing them) otherwise delegates to method erasure().

15

Figure 5: Sec. 3

2. def erasure(sym: Symbol, tp: Type): Type

a helper method in Erasure that picks either a Java-aware or Scala’s own
way of finding an intersection dominator. Details in Sec. 3.2. Unlike
the two helper-helpers below, this method is also used far afield from the
erasure phase (Figure 5).

3. javaErasure and scalaErasure are two TypeMap objects that help the helper
above (and are used by nobody else). Each of them customizes how an
intersection dominator is computed given a list of types. The functionality
they have in common (catalogued in Sec. 3.3) constitutes the bulk of “type
erasure for JVM”.

3.1 Stage 1: transformInfo

Because of the pre-erasing rewritings performed by Erasure.PreTransformer

some symbols won’t show up by the time transformInfo() is invoked (for exam-
ple, there’s nomore Any_isInstanceOf but only Object_isInstanceOf).

transformInfo() special-cases erasure as follows:

• type tests and casts keep their type-arg, albeit erased.

• scala.Array gets as info a new type constructor based on the previous
one, but with an erased resultType (example shown in Sec. 4.5).

• a type var gets a TypeBounds info with WildcardType bounds.

• Members of ArrayClass have the component type erased in their info.

Details about the special-casing appear as inline comments:

def transformInfo(sym: Symbol, tp: Type): Type = {

if (sym == Object_asInstanceOf)

/*- For $asInstanceOf, unchanged i.e. [T]T */

sym.info

else if (sym == Object_isInstanceOf || sym == ArrayClass)

/*- For $isInstanceOf : [T]scala#Boolean */

/*- For class Array : [T]C where C is the erased classinfo of the Array class. */

16

PolyType(sym.info.typeParams, erasure(sym, sym.info.resultType))

else if (sym.isAbstractType)

/*- For a type parameter : A type bounds type consisting of the erasures of its bounds. (BUT SEE BELOW) */

TypeBounds(WildcardType, WildcardType)

/*- TODO: However the comment for WildcardType reads:

"An object representing an unknown type, used during type inference.

If you see WildcardType outside of inference it is almost certainly a bug." */

else if (sym.isTerm && sym.owner == ArrayClass) {

if (sym.isClassConstructor) /*- For Array[T].<init> : (Int)Array[T] */

tp match {

case MethodType(params, TypeRef(pre, sym1, args)) =>

MethodType(cloneSymbols(params) map (p => p.setInfo(erasure(sym, p.tpe))),

typeRef(erasure(sym, pre), sym1, args))

/*- TODO: why not erasure(pre.typeSymbol, pre) ?. */

}

else if (sym.name == nme.apply) /*- For Array[T].apply(Int):T : unchanged */

tp

else if (sym.name == nme.update)

/*- For Array[T].update(Int, T):Unit preserve type-var in MethodType, erase the rest. */

(tp: @unchecked) match {

case MethodType(List(index, tvar), restpe) =>

MethodType(List(index.cloneSymbol.setInfo(erasure(sym, index.tpe)), tvar),

erasedTypeRef(UnitClass))

}

else erasure(sym, tp) /*- For clone() and length on Array, erase */

} else if (

sym.owner != NoSymbol &&

sym.owner.owner == ArrayClass &&

sym == Array_update.paramss.head(1)) {

/*- special case for the 2nd formal value param of Array.update: its type-var info remains non-erased.

I.e. the type-var ‘A‘ of ArrayClass’s ‘update‘ (to recap, the info of that member is ‘(Int,A)Unit‘).

The symbol of that formal has to be caught here since the erasure type map gets applied to every symbol. */

tp

} else {

erasure(sym, tp)

}

}

Additionally, in my codebase (where AddInterfaces is a phase of its own
running right before erasure), there’s an override in class Erasure (the list
above refers to the overridden method in trait Erasure) as depicted in Figure 6.

3.2 Stage 2: def erasure(sym: Symbol, tp: Type): Type

The helper method shown in Figure 7 is heavily used in Erasure and elsewhere
(Figure 5). It picks either a Java-aware or Scala’s own way of finding an inter-
section dominator.

3.3 Stage 3: the ErasureMap TypeMap

In this section, recursive invocations of “erasure” refer to what the method
erasure() (Sec. 3.2) does, not what transformInfo (Sec. 3.1) does.

The erasure |T| of a type T is:

1. For a constant type, itself.

17

Figure 6: Sec. 3.1

Figure 7: Sec. 3.2

18

2. For every other singleton type, the erasure of its supertype.

3. For array typerefs, as follows. When the typeref is to:

(a) scala.Array[T] where T is an abstract type, AnyRef.

(b) scala.Array[Nothing] or scala.Array[Null], Array[AnyRef]

(c) otherwise, Array[|T|].

4. For other (non-array) typerefs, as follows. When the typeref is to:

(a) Any, AnyVal, scala.Singleton, or scala.NotNull, its erasure is AnyRef.

(b) Unit, its erasure is scala.runtime.BoxedUnit.

(c) P.C[Ts] where C refers to a class, its erasure is |P|.C. (where P is first
rebound to the class that directly defines C, see ticket 2585)

(d) a non-empty type intersection (possibly with refinement)

• in Scala, its erasure is that of the intersection dominator

• in Java, its erasure is that of its first parent

(e) else apply(sym.info) //alias type or abstract type

TODO looks like the above stands for:

For a typeref C that refers to:

- an alias type, the erasure of the alias of C.

- an abstract type, the erasure of the upper bound of C.

What about variance, ie under which circumstances does it make sense

‘‘the erasure of the lower bound of C’’?

5. For “quantified types”:

(a) For a polymorphic type, the erasure of its result type.

(b) For an existential type, the erasure of its result type.

6. For method types:

(a) For a method type (Fs)scala.Unit, (|Fs|)scala#Unit

(otherwise the result type would be rewritten as for a typeref to Unit).

(b) For any other method type (Fs)T, (|Fs|)|T|.

7. For a type intersection (possibly with refinement)

(a) Non-empty: In Scala, the erasure of the intersection dominator. In
Java, the erasure of the first parent.

(b) Empty: java.lang.Object (because the intersection dominator of Nil

is AnyRef)

8. For an annotated type, the erasure of its underlying type (where underly-
ing is the type without the annotation)

9. For the classinfo type of

19

(a) java.lang.Object or a Scala value class, the same type without any
parents.

(b) Array, the same type with only AnyRef as parent.

BTW, before erasure, the info of ArrayClass is

[T]java.lang.Object with java.io.Serializable with java.lang.Cloneable{ <...decls...> }

ie a PolyType with resultType of ClassInfoType

(c) any other classinfo type with parents Ps, the same type with parents
|Ps|, but with duplicate references of Object removed.

10. for all other types, the type itself (with any sub-components erased)

3.4 Stage 4: the Eraser custom modifier typer

That’s the topic of Sec. 1.

4 Background

4.1 The transformInfo story

What difference does a transformInfo override make? It’s the Hollywood prin-
ciple at its best: we never invoke it directly, but ends up being invoked un-
der rawinfo. Listing 8 on p. 21 shows an anonymous class of InfoTransformer

with a method override that invokes transformInfo on its outer instance (an
InfoTransform).

As an appetizer, here goes the comment for InfoTransform:

/**

* An InfoTransform contains a compiler phase that transforms

* trees and symbol infos -- making sure they stay consistent.

* The symbol info is transformed assuming it is consistent right before this phase.

* The info transformation is triggered by Symbol::rawInfo,

* which caches the results in the symbol’s type history.

* This way sym.info (during an atPhase(p)) can look up what the symbol’s info

* should look like at the beginning of phase p.

* (If the transformed info had not been stored yet,

* rawInfo will compute the info by composing the info-transformers

* of the most recent phase before p, up to the transformer of the phase right before p.)

*

* Concretely, atPhase(p) { sym.info } yields the info *before* phase p has transformed it.

* Imagine you’re a phase and it all makes sense.

*/

4.2 The different methods for type testing

Object_isInstanceOf and Object_asInstanceOf are synthetic methods. Under the
hood:

lazy val Object_isInstanceOf = newPolyMethod(

ObjectClass,

"$isInstanceOf",

tparam => MethodType(List(), booltype)

) setFlag (FINAL | SYNTHETIC)

20

Figure 8: Sec. 4.1

lazy val Object_asInstanceOf = newPolyMethod(

ObjectClass,

"$asInstanceOf",

tparam => MethodType(List(), tparam.typeConstructor)

) setFlag (FINAL | SYNTHETIC)

The differences with their Any counterparts are shown below (in all cases a type
param is taken, the differences involve names and being zero-arg vs. no-arg):

Any_isInstanceOf = newPolyMethod(

AnyClass,

nme.isInstanceOf_,

tparam => NullaryMethodType(booltype)

) setFlag FINAL

Any_asInstanceOf = newPolyMethod(

AnyClass,

nme.asInstanceOf_,

tparam => NullaryMethodType(tparam.typeConstructor)

) setFlag FINAL

4.3 Type testing on member types

TODO Is the above accounted for in Typers, in Erasure, where?

Quoting from the SLS, §12.1:

The type test x.isInstanceOf[T] is equivalent to a typed pattern match

21

x match {

case _: T’ => true

case _ => false

}

where the type T’ is the same as T except if T is of the form D or
D[tps] where D is a type member of some outer class C. In this case
T’ is C#D (or C#D[tps], respectively) whereas T itself would expand to
C.this.D[tps]. In other words, an isInstanceOf test does not check for
the

4.4 What PolyType means

• A polymorphic nullary method
(e.g, Any_isInstanceOf, whose def is akin to “def isInstanceOf[T]: Boolean”)
is represented as PolyType(tps, NullaryMethodType(restpe))

• A polymorphic (non-nullary) method (e.g, Object_isInstanceOf)
is represented as PolyType(tps, MethodType(restpe))

• A PolyType(tps, TypeRef(...)) indicates a type function
(which results from eta-expanding a type constructor alias).

• PolyType(tps, ClassInfoType(...)) is a type constructor.

Some invariants: no NoSymbol among typeParams, typeParams is not empty.

4.5 Examples (before erasure)

• The info of ArrayClass is

[T]java.lang.Object with java.io.Serializable with java.lang.Cloneable{ <...decls...> }

ie a PolyType with resultType of ClassInfoType.

• The info of Object_asInstanceOf is “[T]T” internally represented as:

a PolyType whose resultType is a

MethodType with

Nil params and a

UniqueTypeRef(NoPrefix, <type-var>, Nil) as resultType

(where <type-var> is a TypeSymbol).

4.6 Intersection dominator

Quoting from the source code:

The intersection dominator (SLS 3.7) of a list of types is computed
as follows.

1. If the list contains one or more occurrences of scala.Array with
type parameters El1, El2, ... then the dominator is scala.Array

with type parameter of intersectionDominator(List(El1, El2,

...)).

22

2. Otherwise, the list is reduced to a subsequence containing only
types which are not subtypes of other listed types (the span.)

3. If the span is empty, the dominator is Object.

4. If the span contains a class Tc which is not a trait and which is
not Object, the dominator is Tc.

5. Otherwise, the dominator is the first element of the span.

4.7 Examples (after erasure)

def doc(tpe: Type): String = {

val buf = new java.io.StringWriter()

treeBrowsers.TypePrinter.toDocument(tpe).format(40, buf)

buf.toString()

}

Let’s record the input-output pairs to ErasureMap.apply(), to later display
them (in the example, on entry to constructors). A few examples:

0: <root>#test#Test#Ti

-> <root>#test#Test#Ti

2: Test.this.Bar

-> <root>#test#Test#Bar

3: (<param> arg$outer: Test.this.type)Test.this.Foo

-> (<param> arg$outer: <root>#test#Test)<root>#test#Test#Foo

5: ()lang.this.Class[?0] forSome { <deferred> <existential/mixedin> type ?0 }

-> ()<root>#java#lang#Class

6: ()lang.this.String

-> ()<root>#java#lang#String

7: scala.this.Unit

-> <root>#scala#runtime#BoxedUnit

27: <notype>

-> <notype>

28: lang.this.Class[?0]

-> <root>#java#lang#Class

31: scala.this.Int

-> <root>#scala#Int

Many examples involve moving away from path-dependent types2.

2http://weblogs.java.net/blog/cayhorstmann/archive/2011/08/05/

inner-classes-scala-and-java

23

http://weblogs.java.net/blog/cayhorstmann/archive/2011/08/05/inner-classes-scala-and-java
http://weblogs.java.net/blog/cayhorstmann/archive/2011/08/05/inner-classes-scala-and-java

	Eraser, the modifier typer that retypes and adapts trees on the fly
	adaptToType()
	adaptMember()
	Any.asInstanceOf[AnyVal] same-thing-as unbox adapted receiver
	Adapt Selects: due to Any member, due to boxing mismatch, and in a few other cases too
	Remove SelectFromArray

	PreTransformer, or the art of preparing trees for Eraser
	All pre-erase transforms except those on Apply nodes
	Type applications
	Sidenote: <array>.asInstanceOf[<BlaBla>]

	Pre-erasing Apply nodes
	Rewrite isInstanceOf[generic-array-type]
	Member selections (incl. constructor) on arrays (generic or not)
	Rewrite calls to ## and getClass on Any and Object
	Rewriting (some) type casts
	Reduce type-testing for singleton and for refined types
	ApplyDynamic

	Explore whether some Apply rewritings can be performed before erasure

	Putting it all together: type erasure for JVM
	Stage 1: transformInfo
	Stage 2: def erasure(sym: Symbol, tp: Type): Type
	Stage 3: the ErasureMap TypeMap
	Stage 4: the Eraser custom modifier typer

	Background
	The transformInfo story
	The different methods for type testing
	Type testing on member types
	What PolyType means
	Examples (before erasure)
	Intersection dominator
	Examples (after erasure)

