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Abstract

AddInterfaces is a phase in disguise:

1. it runs on trees pre-transformed by erasure and

2. transforms them further assuming erased types (because it runs un-
der atPhase(erasure.next)) although erasure isn’t over yet.

3. After receiving from AddInterfaces “splitted trees”, it only remains
for erasure to run its “custom modifier-typer” on them (i.e., re-
typing accounts for the impl-classes and trait-ifaces now in place).

The transformation in Step 2 operates on traits:

• an interface-trait (i.e., a trait lacking concrete methods) is left as is.

• each non-interface-trait is split into an implementation-class (to be
shared across all non-trait classes where the original trait is mixed-
in) and a trait-interface (capturing the non-private members of the
original trait, i.e. the contract that its subtypes must support).

phase name id description

---------- -- -----------

parser 1 parse source into ASTs, perform simple desugaring

namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects

typer 4 the meat and potatoes: type the trees

superaccessors 5 add super accessors in traits and nested classes

pickler 6 serialize symbol tables

refchecks 7 reference/override checking, translate nested objects

liftcode 8 reify trees

uncurry 9 uncurry, translate function values to anonymous classes

tailcalls 10 replace tail calls by jumps

specialize 11 @specialized-driven class and method specialization

explicitouter 12 this refs to outer pointers, translate patterns

/*-----------------------------------------------------------------------------*/

erasure 13 erase types, add interfaces for traits

/*-----------------------------------------------------------------------------*/

lazyvals 14 allocate bitmaps, translate lazy vals into lazified defs

lambdalift 15 move nested functions to top level

constructors 16 move field definitions into constructors

flatten 17 eliminate inner classes

mixin 18 mixin composition

cleanup 19 platform-specific cleanups, generate reflective calls

icode 20 generate portable intermediate code

. . .

1

http://lamp.epfl.ch/~magarcia


Contents

1 The peaceful coexistence of class linearization, trait splitting,
mixing, and VM-level types 3

2 Preliminaries to rewriting 4
2.1 Input shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Naming convention . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Trait-related helpers in Symbols.scala . . . . . . . . . . . . . . 6

3 Term rewriting 7
3.1 Shape of splitted ClassDefs . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Interface facet . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Implementation facet . . . . . . . . . . . . . . . . . . . . . 8

3.2 Calling trait initializers in the primary constructor of a non-trait
class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Trees for updated parents . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Rebinding self-ref still referring to splitted trait . . . . . . . . . . 10

4 Type rewriting 10
4.1 Interface facet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Implementation facet . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Splitted traits “don’t go wrong” after all . . . . . . . . . . . . . . 12

5 Example 13
5.1 Adding implementation classes . . . . . . . . . . . . . . . . . . . 13
5.2 Turning traits into interfaces . . . . . . . . . . . . . . . . . . . . 14
5.3 Adding trait initialization calls . . . . . . . . . . . . . . . . . . . 15
5.4 The rest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2



1 The peaceful coexistence of class linearization,
trait splitting, mixing, and VM-level types

At the end of the day the compiler has to emit VM-level classes and interfaces
which must abide by subtyping and overriding rules less expressive than those
of Scala.

This section tries to convey the intuition why VM-level programs with trans-
lated traits “don’t go wrong” (a colophon on this in Sec. 4.3). That intuition
helps in convincing oneself about the purpose of the rewritings described in
Sec. 3 and Sec. 4. The other piece of the puzzle, mixin, is summarized as neces-
sary. In the rest of this section we focus on a non-trait class (affectionally called
“the non-trait class C ”) because the other cases fall naturally from it.

The contract of a Scala non-trait class C is given by (a) its template; and
(b) its linearization. Jumping ahead, the VM-level counterpart to C (which has
to fulfill the VM-level counterpart to C ’s contract) is a VM-level class C, whose
class-inheritance and interface-extends chains can be visualized as a stack of:

(VM-level-class, List[VM-level-interface])

Giving names to individual types in that stack allows discussing how they are
inter-related:

C , I(N+1, 1), ... , I(N+1, M(N+1))

S(N) , I(N , 1), ... , I(N , M(N) )

S(N-1), I(N-1, 1), ... , I(N-1, M(N-1))

...

S(1) , I(1 , 1), ... , I(1 , M(1) )

Object

The superclasses of C are shown above as S(N) to S(1), with S(N) the direct
superclass of C, S(N-1) the direct superclass of S(N), and so on. The VM-level
interfaces that a VM-level class at level i supports are depicted as I(i, 1) to
I(i, M(i)).

For VM-level types “not to go wrong” there should be a mapping between
the “stacked types” shown above and the contract of C in Scala. First we show
the structure of that mapping, without arguing just yet about the contract-
preservation property.

Informally speaking, the VM-level types above correspond to the Scala types
in the linearization of C :

C, mixinClasses-for-C,
S(N), mixinClasses-for-S(N),
. . . ,
S(1), mixinClasses-for-S(1)
AnyRef
Any

As usual, the linearization of C starts with C and ends with Any. To recap
(Sec. 2.3) mixinClasses returns “The directly or indirectly inherited mixins of
this class except for the superclass and mixin classes inherited by the superclass.
Mixin classes appear in linearization order.”
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The following differences between “Scala linearization” and “VM-level stacked-
types” hint at the transformations necessary to shoehorn ASTs under the former
into ASTs for the latter:

1. in the original linearization, “mixinClasses” may contain both interface-
only and non-interface traits. While the former remain as-is, splitting is
required for the latter (so that the “new linearization” contains only the
interface-facets).

2. in the original linearization, C and the S(i) need not re-declare methods
they inherit from a type appearing later in their respective linearizations.
After trait-splitting, C and its superclasses can’t assume anymore that
those methods have been inherited, and concrete methods (delegators)
should be pasted into the AST of C.

3. Something similar occurs for mixinClasses, but in this case any super-
access in one of them was rewritten (by superaccessors, Sec. 2.1) to target
a synthetic abstract method (which mixin should fill with a method body).

The rest of these notes focus on the Step 1 (that’s what AddInterfaces does).
Steps 2 and 3 are covered in the write-up on mixin.

2 Preliminaries to rewriting

2.1 Input shapes

A few highlights about AST shapes that AddInterfaces is about to transform:

1. The classes arriving at AddInterfaces can be trait or non-trait (for the
former, either interface-only or non-interface; and for the latter either
abstract or concrete).

2. After superaccessors, all traits (whether interface-only or not) lack super-
refs. Because superaccessors rewrites them into invocations of private
trait-level methods syntehsized to that effect. Same thing for super-refs
targeting members of the super-class of an outer class.

3. Given that:

(a) refchecks lowers ModuleDef nodes into module-class, module-variable,
and module-accessor;

(b) general instance creation expression were expanded (by parser) into
blocks containing a ClassDef and a simple instance creation expres-
sion, { class a extends t; new a }

trait-splitting and trait-mixing can focus on ClassDef nodes only.

4. Non-interface trait classes contain a primary constructor, i.e. a single no-
args constructor named nme.MIXIN CONSTRUCTOR that was fabricated back
in parser (by calling the ast.Trees.Template() factory method, Figure 1).
The only possible contents of that constructor are early initializers for
val/var in a super-trait, for example:
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Figure 1: Sec. 2.1

trait Person { val age: Int }

trait TenYearOld extends { val age = 10 } with Person

5. Given that constructors hasn’t run yet, the template of the incoming trait
may contain executable statements.

6. Some of the possible contents of a template at this point in the pipeline
(actually, PackageDef and ModuleDef can’t show up):

2.2 Naming convention

Specially on a first reading, names like the following are useful: traitClazz (the
symbol of the trait being splitted) vs. implClazz (a new symbol), i.e. using the
name to convey information about the splitting role, akin to Hungarian notation.
Hungarian notation is enough because there are long stretches of code where a
symbol can’t possibly be anything other than, say, a traitClazz, thus it’s not
misleading to call it like that.
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Listing 1: Sec. 2.3

/** Is this a symbol which exists only in the implementation class, not in its trait? */

final def isImplOnly: Boolean =

hasFlag(PRIVATE) ||

(owner.isImplClass || owner.isTrait) &&

((hasFlag(notPRIVATE | LIFTED) && !hasFlag(ACCESSOR | SUPERACCESSOR | MODULE) || isConstructor) ||

(hasFlag(LIFTED) && isModule && isMethod))

override final def isTrait: Boolean =

isClass && hasFlag(TRAIT | notDEFERRED) // A virtual class becomes a trait (part of DEVIRTUALIZE)

def isVirtualTrait =

hasFlag(DEFERRED) && isTrait

/** Is this symbol a trait which needs an implementation class? */

final def needsImplClass: Boolean =

isTrait && (!isInterface || hasFlag(lateINTERFACE)) && !isImplClass

Similarly for traitMember, implMember, and traitDecls (also symbols) and
traitTempl and traitTemplStat (Trees).

The suggestions above are useful because sym can denote an implClazz,
traitMember, or implMember depending on context. In other cases, different
names are used at different locations for the same concept (e.g., implClazz goes
by the name of impl, implClass, or sym, depending on whether the naming con-
text is implClass (the single point of access to the implClassMap map), implDecls,
or LazyImplClassType.

Regarding Trees, tree stands most of the time for traitTemplStat, however in
one occassion primaryConstrBody is more descriptive (in addMixinConstructorCalls()).

Another suggestion:

private def implMethodDef(traitDefDef: Tree): Tree = {

val traitMethod = traitDefDef.symbol

implMethodMap.get(traitMethod) match {

case Some(implMethod) =>

traitDefDef.symbol = implMethod

new ChangeOwnerAndReturnTraverser(traitMethod, implMethod)(traitDefDef)

case None =>

abort("implMethod missing for " + traitMethod)

}

}

2.3 Trait-related helpers in Symbols.scala

Several query-methods directly about traits:

• Yes/No (Listing 1): isImplOnly, isTrait, isVirtualTrait, needsImplClass

• Filters (Listing 2): toInterface, mixinClasses, primaryConstructor
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Listing 2: Sec. 2.3

/** If this symbol is an implementation class, its interface, otherwise the symbol itself

* The method follows two strategies to determine the interface.

* - during or after erasure, it takes the last parent of the implementation class

* (which is always the interface, by convention)

* - before erasure, it looks up the interface name in the scope of the owner of the class.

* This only works for implementation classes owned by other classes or traits.

*/

final def toInterface: Symbol =

. . .

/** The directly or indirectly inherited mixins of this class

* except for mixin classes inherited by the superclass. Mixin classes appear

* in linearization order.

*/

def mixinClasses: List[Symbol] = {

val sc = superClass

ancestors takeWhile (sc ne)

}

/** The primary constructor of a class. */

def primaryConstructor: Symbol = {

var c = info.decl(

if (isTrait || isImplClass) nme.MIXIN_CONSTRUCTOR

else nme.CONSTRUCTOR)

c = if (c hasFlag OVERLOADED) c.alternatives.head else c

//assert(c != NoSymbol)

c

}

/** The implementation class of a trait. */

final def implClass: Symbol = owner.info.decl(nme.implClassName(name))

3 Term rewriting

3.1 Shape of splitted ClassDefs

As part of splitting, the contents of the incoming trait are separated between
the resulting facets. It’s easier to describe what is allowed in the interface facet
(Sec. 3.1.1) and from there figure out why “the rest” has to end up in the
implementation fact (Sec. 3.1.2). With these “recipes” in place, it’s possible to
stand back and see why the resulting program remains well-typed after trait
splitting (Sec. 4.3).

3.1.1 Interface facet

There’s already a ClassDef for the interface facet (the incoming non-interface
trait itself). On exit, this ClassDef will have been pruned as follows:

1. What stays as is (carrying their original symbols): the DefDef trees
of public abstract methods, as well as those of super-accessors (although
they are private).

2. What gets added, minus body: a non-abstract method in the incoming
trait belonging to its contract can’t be added as-is to the interface facet.
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Instead, a method signature is fabricated, including the original symbol.
The incoming method body belongs instead in the implementation facet.

3. The rest is elided

Two sidenotes:

• A super-accessor passes neither the isInterfaceMember() nor the needsImplMethod()

tests. It “stays as is” by virtue of falling off into the last branch of chained
if-elses.

• The counterpart to one of the added “non-abstract methods, minus body”
can be found via implMethodMap(traitMethod).

None of the methods (nor their symbols) arriving in the trait’s template
“gets lost”. The following snippet shows they are separated evenly between
both facets:

The following helpers are used to prune the incoming trait’s template:

private def ifaceTemplate(traitTempl: Template): Template

private def ifaceMemberDef(traitTemplStat: Tree): Tree

3.1.2 Implementation facet

There’s no ClassDef for an implementation class among the incoming ASTs, so
one is built from the ground up using the following helpers (indentation shows
calling-called relationship):

def implClassDefs(stats: List[Tree]): List[Tree]

private def implTemplate(implClazz: Symbol, traitTempl: Template): Template // changes owner

private def implMemberDef(traitTemplStat: Tree): Tree

private def implMethodDef(traitTemplStat: Tree, ifaceMethod: Symbol): Tree

private def addMixinConstructorDef(implClazz: Symbol, implMembers: List[Tree]): List[Tree]

// not to be confused with addMixinConstructorCalls

As for the shape of the resulting AST, an implementation template receives:

1. Initially parents match the original parents of the incoming trait, but
that’s only transient: the output of implClassDefs() will go through
transformStats(), and from there to the fix-up in Sec. 3.3.
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2. Given that constructors hasn’t run yet, the incoming trait’s template may
contain executable statements. They go unmodified to the implementation
facet. Any accesses they contain to members of the trait remain well-typed
because any such access refers to:

(a) a public member, and the impl extends the iface;

(b) a super-accessor, which also ended up in the iface although super-
accessors are private;

(c) otherwise the access refers to a member that goes to the implemen-
tation facet.

3. In general, all non-method trees go to the implementation facet.

4. All non-interface methods of the original trait’s template, carrying their
symbols. In general, a selection of anyting but an interface member or a
super-accessor now refers to a member of the implementation class.

5. private methods.

6. the $init$ constructor.

For example, the private[this] field backing a trait-level “public” var goes
to the implementation class. Getter and setter show up in both iface and impl,
as signature in the iface along with original symbols and with the original bodies
in the impl (along with new symbols).

Right after AddInterfaces, none of the added impl-methods (always with
new symbols) is referred from any other Tree.

3.2 Calling trait initializers in the primary constructor of
a non-trait class

The real purpose of this rewriting is to put in place enough information (“implClazz.primaryConstructor”)
for mixin later to fix-up the trait-init-calls added here. A trait-init-call invokes
the $init$ constructor of an implementation class.

Did you know that isClassConstructor returns false for $init$ constructors,
although they are isPrimaryConstructor?

Summing up: only a non-trait class is candidate for this rewriting, and if
it has no non-interface trait among its mixinClasses, it doesn’t get rewritten
either.

After fulfilling those conditions, our clazz of interest will contain (after the
super-init-call in its primary constructor) trait-init-calls for its mixinClasses,
added by:

def mixinConstructorCall(implClazz: Symbol): Tree = atPos(primaryConstrBody.pos) {

Apply(Select(This(clazz), implClazz.primaryConstructor), List())

}

Now we see the need for a fix-up later: How come our clazz inherits from
(several) implClazz, as implied by the above? In fact, it extends interface facets,
but thanks to asInstanceOf[] the trait-init-calls type-check:
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3.3 Trees for updated parents

case Template(parents, self, body) =>

val parents1 = sym.owner.info.parents map (t => TypeTree(t) setPos tree.pos)

treeCopy.Template(tree, parents1, emptyValDef, body)

3.4 Rebinding self-ref still referring to splitted trait

All expressions (method bodies, template statements) were moved from the
incoming-trait to the implementation facet, and they may contain This(traitClazz)

nodes. If the self-reference in question is enclosed at some depth by implClass(traitClazz),
then the self-reference should be made to point to it instead (otherwise remains
as is).

TODO Details.

Mechanics: “The symbol of a This is the class to which the this refers. For
instance in C.this, it would be C.”

case This(_) =>

if (sym.needsImplClass) {

val implClazz = implClass(sym)

var owner = currentOwner

while (owner != sym && owner != implClazz) owner = owner.owner;

if (owner == implClazz) This(implClazz) setPos tree.pos

else tree

} else tree

TODO "All expressions were moved from the incoming-trait to the impl-class".

Example where that can be seen for default params.

4 Type rewriting

As mentioned in the Abstract, AddInterfaces runs after trees have been pre-
transformed by erasure but before they have been re-typed:
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4.1 Interface facet

The info of an interface facet (a ClassInfoType) is updated by

def transformMixinInfo(tp: Type): Type

Changes affect parents and scope (the class-symbol also gets lateINTERFACE set):

1. An interface can’t possibly have a super-class. Whatever super-class there
was, it’s made to be Object from now on. This won’t break any super-
refs, because superaccessors got rid of them in favor of invocations to
interface-owned synthetic methods (Sec. 2.1). The other Types in parents

necessarily denote traits, and in fact from now on denote interface-only
traits.

2. The computed decls agree with term rewriting: from those in the incoming
non-interface trait, only super-accessors and isInterfaceMember() symbols
are kept. Off-topic: here’s where type aliases and abstract member types
are elided.

Summing up: the interface-facet is almost ready for VM-consumption (pending
erasure). By now it’s a VM-ready interface that may extend other VM-ready
interfaces.

4.2 Implementation facet

The info of an implementation facet (a ClassInfoType) is updated by LazyImplClassType.
Changes affect parents and scope (the class-symbol got IMPLCLASS set back when
the symbol was created):

1. The mandatory parents an implementation class have to do with the con-
tents of its template, discussed in Sec. 3.1.2. In particular:

Given that constructors hasn’t run yet, the incoming trait’s
template may contain executable statements. They go unmodi-
fied to the implementation facet. (Any accesses they contain to
members of the trait remain well-typed because any such access
refers to:
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(a) a public member, and the impl extends the iface;

(b) a super-accessor, which also ended up in the iface although
super-accessors are private;

(c) otherwise the access refers to a member that goes to the
implementation facet.

What parents are mandatory for the implementation class? Clearly, the
original super-class is not mandatory, while the interface facet is. In detail:

ObjectClass.tpe +:

(parents.tail map mixinToImplClass filter (_.typeSymbol != ObjectClass)) :+

traitClazz.tpe

2. Regarding decls,

TODO

Mechanics: the Type taken as starting point is that of the incoming trait
before erasure has touched it in any way :

implClazz setInfo implType(

atPhase(currentRun.erasurePhase)(

traitClazz.info

)

)

During setInfo however, currentRun.erasurePhase.next is in effect (to recap
from the Abstract, “AddInterfaces transforms them further assuming erased
types (because it runs under atPhase(erasure.next)) although erasure isn’t
over yet”)

Example:

// before AddInterfaces

IntCell#7577 with ScalaObject#450{

def $init$#9721(): Unit#447;

override def setCell#9722(i#19004: Int#375): Unit#447;

final def Doubling$$super$setCell#17599(i#19009: Int#375): Unit#447

}

// after AddInterfaces

java.lang.Object#2337 with ScalaObject#450 with Doubling#7578{

def $init$#9721(): Unit#447;

override def setCell#19018(i#19019: Int#375): Unit#447

}

4.3 Splitted traits “don’t go wrong” after all

TODO Bring together a grand summary of all sufficient conditions

given piecemeal in previous sections.
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Figure 2: Type hierarchy of the running example, Listing 3 on p. 14

5 Example

A running example (Listing 3 on p. 14) is used to visually depict the workings
of AddInterfaces:

Figure 2 depicts the type hierarchy of the running example.

1. Adding implementation classes (Sec. 5.1)

2. Turning non-interface traits into interfaces (Sec. 5.2)

3. Adding trait initialization calls (Sec. 5.3)

4. The rest (Sec. 5.4)

5.1 Adding implementation classes

• Example:

• How:

override def transformStats(stats: List[Tree], exprOwner: Symbol): List[Tree] =

(super.transformStats(stats, exprOwner) :::

super.transformStats(implClassDefs(stats), exprOwner))
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Listing 3: Running example, reproduced from TODO

class IntCell {

var x = 0

def get() = this.x

def set(i: Int) { this.x = i }

}

trait Doubling extends IntCell {

override def set(i: Int) { super.set(2*i) }

}

trait Incrementing extends IntCell {

override def set(i: Int) { super.set(i+1) }

}

object cid extends IntCell with Incrementing with Doubling;

/*- cid.x is always odd (or zero) */

object cdi extends IntCell with Doubling with Incrementing;

/*- cdi.x is always even (or zero) */

5.2 Turning traits into interfaces

• Example:

• How:

override def transform(tree: Tree): Tree = {

val sym = tree.symbol

val tree1 = tree match {

case ClassDef(mods, name, tparams, impl) if (sym.needsImplClass) =>

implClass(sym).initialize // to force lateDEFERRED flags

treeCopy.ClassDef(tree, mods | INTERFACE, name, tparams, ifaceTemplate(impl))

14
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5.3 Adding trait initialization calls

• Example:

• How:

case DefDef(mods, name, tparams, vparamss, tpt, rhs)

if (sym.isClassConstructor && sym.isPrimaryConstructor && sym.owner != ArrayClass) =>

treeCopy.DefDef(tree, mods, name, tparams, vparamss, tpt,

addMixinConstructorCalls(rhs, sym.owner)) // (3)

5.4 The rest

• How:

case Template(parents, self, body) =>

val parents1 = sym.owner.info.parents map (t => TypeTree(t) setPos tree.pos)

treeCopy.Template(tree, parents1, emptyValDef, body) // TODO Note: self goes away.

case This(_) =>

if (sym.needsImplClass) {

val implClazz = implClass(sym)

var owner = currentOwner

while (owner != sym && owner != implClazz) owner = owner.owner;

if (owner == implClazz) This(implClazz) setPos tree.pos

else tree

} else tree
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