
Lambda Lifting

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

August 28th, 2011

Abstract

The reasoning behind the lambdalift transformation can be found in
Philippe Altherr’s PhD report [1] (which was completed in 2006). In
contrast, these notes contain a code walkthrough of the lambdalift im-
plementation as of r24886. This phase turns local methods and classes
into class-level definitions (“lifting”). A method or class is local iff its
definition is lexically enclosed by a block expression or by a method defi-
nition. Lifting involves adding extra value params and value arguments,
and rephrasing accesses to free variables.

Just to clarify: inner classes are not “lifted” by lambdalift. Instead,
explicitouter turns inner classes into nested classes, lambdalift turns
local classes into nested classes, and flatten (a forJVM phase) un-nests
them into top-level classes.

phase name id description

---------- -- -----------

parser 1 parse source into ASTs, perform simple desugaring

namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects

typer 4 the meat and potatoes: type the trees

superaccessors 5 add super accessors in traits and nested classes

pickler 6 serialize symbol tables

refchecks 7 reference/override checking, translate nested objects

liftcode 8 reify trees

uncurry 9 uncurry, translate function values to anonymous classes

tailcalls 10 replace tail calls by jumps

specialize 11 @specialized-driven class and method specialization

explicitouter 12 this refs to outer pointers, translate patterns

erasure 13 erase types, add interfaces for traits

lazyvals 14 allocate bitmaps, translate lazy vals into lazified defs

/*---*/

lambdalift 15 move nested functions to top level

/*---*/

constructors 16 move field definitions into constructors

flatten 17 eliminate inner classes

mixin 18 mixin composition

cleanup 19 platform-specific cleanups, generate reflective calls

icode 20 generate portable intermediate code

inliner 21 optimization: do inlining

closelim 22 optimization: eliminate uncalled closures

dce 23 optimization: eliminate dead code

jvm 24 generate JVM bytecode

terminal 25 The last phase in the compiler chain

1

http://lamp.epfl.ch/~magarcia

Contents

1 Intro 3
1.1 Terminology . 3
1.2 Recipe . 4
1.3 Example 1: Lifting a local method (loop in fold) 5
1.4 Example 2: Lifting a local class (anonymous closure) 5
1.5 Example 3: Interplay with outer instances 5

2 A 10’000-ft view of the code 8
2.1 A brief choreography of lifting . 8
2.2 Need to know before delving: OuterPathTransformer 8

3 Gathering information for later: freeVarTraverser 10
3.1 Call graph . 12

3.1.1 callee is method or constructor 12
3.1.2 callee is class . 12

3.2 Postconditions after freeVarTraverser has run 13

4 Before nodes are transformed: computeFreeVars 13
4.1 Computing extra sets (i.e., populating the free map) 13
4.2 Invariant for the free map (extra sets) 14
4.3 Scala.NET and markFree() . 15
4.4 Renaming of liftables and captured locals 15
4.5 Creating symbols for conveyor params and extra fields 16

5 Term rewriting 16
5.1 postTransform . 17

5.1.1 Adding conveyor params and extra fields 17
5.1.2 Rewrite the definition site of a proxied ValDef 18
5.1.3 Adding conveyor arguments (for methods and constructors) 18
5.1.4 Accesses to captured locals and invocations to local methods 18
5.1.5 Bring initializers for lazy vals and modules to Block start 18
5.1.6 Misc . 19

5.2 Pasting lifted trees: transformStats (including addLifted) . . . 19

6 Type rewriting 20

2

1 Intro

1.1 Terminology

Throughout this write-up, the following terminology is used:

• local value: a function-local value, i.e. a value which normally exists for
as long as an activation record is available on the call stack. Examples:
method-level and block-level val and var; and value parameters (but not
a val or var value param to a primary constructor). Before lambdalift,
the symbol of a local value isLocal:

/** Is this symbol locally defined? I.e. not accessed from outside ‘this’ instance */

final def isLocal: Boolean = owner.isTerm

• local def : A method or class defined in a method, constructor, or block.
In this case, its symbol isLocal. For example, LocalA and LocalB are local
classes:

object Test {

{ class LocalA }

def m() = { class LocalB }

}

• liftable method/class: a local method/class (before being lifted)

• lifted method/class: the counterpart to a liftable, after the transfor-
mation has run. It has been renamed, to avoid name collision.

• free var: a reference to a non-locally defined local value. We say the local
value has been captured by the reference (it’s only local values that can
be captured). Renaming also done here.

• extra set of a (local) method: “The set of variables for which a func-
tion needs an extra parameter is called its extra set . . . The extra set of
a function depends on the extra sets of the functions it calls” [1, §3.2.1]
For example, a local function may contain no free vars, yet call (local)
functions which do.

• extra set of a (local) class: A class may capture locals (Sec. 4.1) thus
we may speak of its extra set. That class can be local, or nested to some
depth in a local class (details under “A comment about inner classes” in
Sec. 1.2).

• conveyor param: a value param added to a lifted method or constructor
in order to provide one of:

– For captured read-only locations:

∗ a primitive value (for primitive free vals), or

∗ an object-reference (for non-primitive free vals)

3

– For captured read-write locations:

∗ a Ref or VolatileRef wrapper (for both AnyVal and AnyRef free
vars).

• Ref wrapper: (a.k.a. “proxy”). An instance of a Java class, used to
emulate “passing by reference” a data location (emulation works provided
that both definition site and all access sites are rewritten to follow the Ref

protocol). For example:

package scala.runtime;

public class VolatileBooleanRef implements java.io.Serializable {

private static final long serialVersionUID = -5730524563015615974L;

volatile public boolean elem;

public VolatileBooleanRef(boolean elem) { this.elem = elem; }

public String toString() { return String.valueOf(elem); }

}

• conveyor argument: a value param for a conveyor param (in a method
or constructor).

1.2 Recipe

What follows is very condensed description of lambda lifting. For details, please
check the 17-page Ch. 3 (Lambda Lift) in Altherr’s PhD report [1], especially
as it discusses in §3.5 issues around lifting of methods and classes that refer to
type variables defined in an enclosing context. Currently lambdalift runs after
erasure but from a Scala.NET perspective that discussion is certainly relevant.
Going deeper, [1, §5.6] formalizes the transformation in terms of ScalaCore, a
formal Scala subset.

Methods and classes are lifted differently:

• Because a local method M is not visible outside its owner, all its callsites
are known. This allows changing the signature of M as part of lifting
(by adding conveyor params). No callsite can be missed and thus all are
rewritten accordingly.

• Instances of a local class C may escape the activation record of the method
owning C, therefore the public API of C (except constructors) should be
preserved (“public API” means: API inherited from non-local classes).
This is achieved by leaving methods signatures as-is, and by rewriting
constructors (and their callsites) to account for conveyor params:

local classes are augmented with fields containing the values of
the accessed variables of the enclosing functions. If some in-
stances of a local class outlive the invocation of their enclos-
ing function, they can still refer the variables of that function
through . . . the additional fields. [1, §3.1].

So far we’ve focused on the extra sets of local methods. Local classes have extra
sets too, which amount to extra fields where the values of conveyor params
are made available (across methods and nested classes). Local capture, when

4

lexically enclosed in a constructor, does not contribute to the extra set of a
class, but only to that of the constructor. In contrast, local capture in methods
of the class will result in extra fields [1, §3.2.2]:

References to free variables within constructors [of a liftable class]
do not contribute to the extra fields of their class. They contribute
only to the extra parameters of the constructor in which they occur.
In fact, constructors are treated as if they were functions defined in
the same scope as their class

A comment about inner classes. There are no more inner classes by the
time lambdalift runs. Instead, an AST arriving at lambdalift exhibits a class
N nested in a local class L (Sec. 1.5) for what used to be an outer-inner configu-
ration. In this case:

• After lifting L, any nested class it contains will remain in place.

• What to do about usages of captured locals in N? Its enclosing class plays
a role: the extra set of a class includes those of its nested classes and,
because of this, L already gets extra fields for all captured locals in N.
Therefore, N can access those captured locals via outer-paths (however,
N’s constructors need conveyor params). Details in Sec. 1.5.

1.3 Example 1: Lifting a local method (loop in fold)

The example in [1, Ch. 3] and reproduced below,

object Example {

def fold(z: Int, ls: List[Int], f: (Int, Int) => Int): Int = {

def loop(x: Int, ys: List[Int]): Int = { if (ys.isEmpty) x else loop(f(x, ys.head), ys.tail) }

loop(z, ls)

}

}

is rewritten as shown in Listing 1 on p. 6 (using -no-specialization -g:notailcalls

-Xprint:lambdalift)

1.4 Example 2: Lifting a local class (anonymous closure)

After and before lambdalift in Figure 1 on p. 7.

def main(args: Array[String]) {

args find { s => s.length == args.length }

}

1.5 Example 3: Interplay with outer instances

A liftable def may contain usages of two kinds of non-locally defined terms:

1. values or methods that are isLocal; and

2. values or methods belonging to an outer instance.

5

Listing 1: Sec. 1.3

[[syntax trees at end of lambdalift]]// Scala source: bt4.scala

package <empty> {

final object Example extends java.lang.Object with ScalaObject {

def this(): object Example = {

Example.super.this();

()

};

def fold(z: Int, ls: List, f$1: Function2): Int = Example.this.loop$1(z, ls, f$1);

final private[this] def loop$1(x: Int, ys: List, f$1: Function2): Int = {

if (ys.isEmpty())

x

else

Example.this.loop$1(

scala.Int.unbox(

f$1.apply(scala.Int.box(x), ys.head())

),

ys.tail().$asInstanceOf[List](),

f$1

)

} // end of def loop$1

} // end of object Example

}

As we’ll see, only the former are “captured” and require rewriting by lambdalift,
the latter are accessed over an outer-accessor path as any other outer-reference
(and it’s explicitouter that performs the required rewriting).

Example:

def f(farg: Int) = {

class O {

var ofield = "abc"

class I {

val i1 = farg

val i2 = ofield

}

}

}

Only farg isLocal, classes O and I form an outer-inner pair, and of the two ac-
cesses in I only farg is free (as per the terminology in Sec. 1.1). -Xprint:explicitouter

shows that I contains:

private[this] val i1: Int = farg;

<stable> <accessor> def i1(): Int = I.this.i1;

private[this] val i2: java.lang.String = I.this.TestOI$$$outer().ofield();

6

Figure 1: Sec. 1.4

<stable> <accessor> def i2(): java.lang.String = I.this.i2;

Looking ahead, -Xprint:lambdalift shows that farg was passed via a con-
veyor param to O’s constructor but not to I, being accessed instead from there
over an outer-path (to build the AST for that path LambdaLifter inherits from
OuterPathTransformer, Sec. 2.2):

class O$1 extends java.lang.Object with ScalaObject {

def this(farg$1: Int): Test#O$1 = {

O$1.super.this();

()

};

<synthetic> <paramaccessor> val farg$1: Int = _

. . .

class I extends java.lang.Object with ScalaObject {

def this($outer: Test#O$1): Test#O$1#I = {

I.super.this();

()

};

private[this] val i1: Int = I.this.TestOI$$$outer().farg$1;

<stable> <accessor> def i1(): Int = I.this.i1;

. . .

};

. . .

7

2 A 10’000-ft view of the code

2.1 A brief choreography of lifting

Just to be clear about what the super calls of transformUnit(unit), transformStats(stats,
exprOwner), and transform(tree) refer to, here are the base classes of LambdaLifter:

It all starts here:

Because it runs in transformUnit, computeFreeVars is run just once be-
fore any node is transformed. Nodes are transformed under the auspices of
atPhase(phase.next) in a LambdaLifter override:

override def transform(tree: Tree): Tree =

postTransform(super.transform(tree) setType lifted(tree.tpe))

The operation of the lifted type-map does not depend on traversal-order
but just on its Type argument. Other operations do depend (via liftedDefs) on
traversal order, in particular:

/** Transform statements and add lifted definitions to them. */

override def transformStats(stats: List[Tree], exprOwner: Symbol): List[Tree] = {

. . .

On the way back to the tree root, postTransform(tree: Tree) runs (Sec. 5.1).
Among other rewritings, it adds params to constructors of lifted classes and to
lifted methods, and replaces captured variables.

2.2 Need to know before delving: OuterPathTransformer

Figure 2 depicts a bird’s eye view of the LambdaLift InfoTransform, with two big
fragments collapsed: the LambdaLifter transformer and the lifted type map.

But first, why does the transformer extend explicitOuter.OuterPathTransformer(unit)?
Looks like that class is not used anywhere in ExplicitOuter itself (which instan-
tiates an ExplicitOuterTransformer in newTransformer) but only in lambdalift

(Figure 3). What is explicitOuter.OuterPathTransformer(unit) good for?

8

Figure 2: Sec. 2.2

Figure 3: Sec. 2.2

Recap: any transformation running after explicitouter cannot add inner
classes and expect them to be lowered to nested classes. Instead, a nested
class can be added and the lowering performed “manually”: any outer-instance
references have to be expressed as (chains of) outer-accessor invocations. BTW,
in forJVM compilation mode, nested classes can be added as late as constructors

because then flatten runs. In forMSIL compilation mode, nested classes can be
added as late as cleanup: no flatten takes place because class-nesting can be
represented at the bytecode level.

A phase which adds a nested class with some “manual” building of outer-
path is constructors, as part of processing extends DelayedInit (a nested class
is added for the delayed-init closure).

Back to lambdalift. This phase preserves the nesting of any classes nested
in a local class, and thus it may be necessary to build an AST for an outer-path
(to the extra field of the enclosing class, as illustrated in Sec. 1.5). For that,
OuterPathTransformer is the tool of choice.

The essential pieces of information about OuterPathTransformer are (a) header
source comment; and (b) structure. Both are straightforward enough to cut&paste,
so here they go:

/** A base class for transformers that maintain outerParam

* values for outer parameters of constructors.

* The class provides methods for referencing via outer.

*/

abstract class OuterPathTransformer(unit: CompilationUnit) extends TypingTransformer(unit) {

9

Besides keeping the OuterPathTransformer’s outerParam up-to-date, three
utility tree builders are provided, summarized below:

/** The first outer selection from currently transformed tree.

* The result is typed but not positioned.

*/

protected def outerValue: Tree =

if (outerParam != NoSymbol) ID(outerParam)

else outerSelect(THIS(currentClass))

/** Select and apply outer accessor from ’base’

* The result is typed but not positioned.

* If the outer access is from current class and current class is final

* take outer field instead of accessor

*/

private def outerSelect(base: Tree): Tree = {

. . .

}

/** The path

* <blockquote><pre>‘base’.$outer$$C1$outer$$Cn</pre></blockquote>

* which refers to the outer instance of class to of

* value base. The result is typed but not positioned.

*/

protected def outerPath(base: Tree, from: Symbol, to: Symbol): Tree = {

. . .

}

3 Gathering information for later: freeVarTraverser

Unsurprisingly, freeVarTraverser (Listing 2) can find (a) local definitions and
(b) usages of locals as it traverses a unit.

1. All of the former are marked “renamable”. Renaming is needed due to the
possibility that a definition already exists with that name in the target
ClassDef (i.e., the ClassDef that becomes the new home for the lifted
def). Renaming adds $ as suffix (for details see Sec. 4.4) to rule out name
clashes.

2. Regarding usages of locals, they fall into two syntactic variations:

(a) Ident(name) matches two things. First, invocations of local methods
are never path-qualified and thus always match Ident(name). Second,
usages of value params (always islocal), and usages of method-level
or block-level vals or vars (similarly, always islocal); also match
Ident(name).

10

Listing 2: Sec. 3

val sym = tree.symbol;

tree match {

case ClassDef(_, _, _, _) =>

liftedDefs(tree.symbol) = Nil

if (sym.isLocal) renamable addEntry sym /*- (1.a) definition of local class. */

case DefDef(_, _, _, _, _, _) =>

if (sym.isLocal) { /*- (1.b) definition of local method. */

renamable addEntry sym

sym setFlag (PRIVATE | LOCAL | FINAL)

} else if (sym.isPrimaryConstructor) { /*- (2.b) definition of (an always non-local) primary constructor

(not necessarily of a local-class). */

symSet(called, sym) addEntry sym.owner

}

case Ident(name) =>

if (sym == NoSymbol) {

assert(name == nme.WILDCARD)

} else if (sym.isLocal) { /*- (2.a) access to a local method or value. */

val owner = currentOwner.logicallyEnclosingMember

if (sym.isTerm && !sym.isMethod) markFree(sym, owner)

else if (sym.isMethod) markCalled(sym, owner)

//symSet(called, owner) addEntry sym

}

case Select(_, _) => /*- (2.b) invocation of the constructor of a local class. */

if (sym.isConstructor && sym.owner.isLocal)

markCalled(sym, currentOwner.logicallyEnclosingMember)

case _ =>

}

i. For callsites invoking local methods, we’ll want to track the lex-
ical context where the callsite occurs (that’s what markCalled()

does, as part of building the call-graph, Sec. 3.1)

ii. For usages of value terms, a decision has to be made whether the
usage implies capture (i.e., whether the local is free in the context
it occurs). That decision is done inside markFree() (which thus
may not mark the access as free, after all). For markFree() to
make that decision, the lexical context where the access occurs
is passed as second argument. Details in Sec. 4.2.

(b) instantiations of local classes pick a constructor name. They are
matched by the pattern:

case Select(_, _)

if (sym.isConstructor && sym.owner.isLocal)

=>

The snippet above participates (along with others) in building the
call-graph (Sec. 3.1).

11

3.1 Call graph

The call graph is used just to compute extra sets. Other than that, it’s used
nowhere else.

For the purposes of lambdalift, the call-graph is a one-to-many symbol-map
(“called”) that associates each key (a symbol representing the caller) with a set
of symbols for its callees. Each entry in this map contains (in general several)
(caller, callee) pairs. Each such pair can be classified into:

1. callee is method or constructor, Sec. 3.1.1

2. callee is class, Sec. 3.1.2

A few mnemonics:

markCalled(callee, caller)

≡
symSet(called, caller) addEntry callee

≡
called.getOrElseUpdate(caller, new TreeSet[Symbol]) addEntry callee

3.1.1 callee is method or constructor

Given a method or constructor tracked as callee, all that can be said about its
corresponding caller is that it’s the logicallyEnclosingMember for some callsite
targeting the callee. More can be said about the callee:

1. (callee.isMethod && callee.isLocal), or

2. (callee.isConstructor && callee.owner.isLocal)

To recap, somesym.logicallyEnclosingMember is the method or class logically
enclosing somesym’s definition. The snippets in freeVarTraverser that contribute
pairs as above are resp.:

1. For the method-callee case:

val owner = currentOwner.logicallyEnclosingMember

if (sym.isTerm && !sym.isMethod) markFree(sym, owner)

else if (sym.isMethod) markCalled(sym, owner)

2. For the constructor-callee case:

case Select(_, _) =>

if (sym.isConstructor && sym.owner.isLocal)

markCalled(sym, currentOwner.logicallyEnclosingMember)

3.1.2 callee is class

A pair can assume another shape: a caller.isPrimaryConstructor is tracked
as “invoking” its declaring class (not the other way around). Irrespective of
whether the declaring class is local or not. The purpose of this arrangement is
described in Sec. 4.1.

Summing up,

12

1. caller.isPrimaryConstructor

implies both
called(caller).size == 1 and callee.isClass

The snippet in freeVarTraverser that adds pairs as above is:

case DefDef(_, _, _, _, _, _) =>

if (sym.isLocal) {

renamable addEntry sym

sym setFlag (PRIVATE | LOCAL | FINAL)

} else if (sym.isPrimaryConstructor) {

symSet(called, sym) addEntry sym.owner

}

3.2 Postconditions after freeVarTraverser has run

After freeVarTraverser has run on a compilation unit:

• liftedDefs contains an entry for each ClassDef C in the unit. The entry
targets no trees so far (later, the key will address the liftable DefDefs and
ClassDefs that will become members of C).

• A call-graph has been built as described in Sec. 3.1.

Useful postconditions for free variables haven’t been established yet, that will
have to wait till Sec. 4.2.

By now renamable contains the symbol of each liftable ClassDef and DefDef,
but we’re not done adding symbols. Those for captured local values are missing,
to be added while computing extra sets (Sec. 4.1). In particular, it’s the markFree

invocation there that effects this.

4 Before nodes are transformed: computeFreeVars

Given that computeFreeVars is invoked in transformUnit, it can prepare data
before any node is transformed by the transform override. After gathering
information about locals via freeVarTraverser (Sec. 3) computeFreeVars goes on
to:

• compute extra sets (Sec. 4.1 and Sec. 4.2),

• rename some symbols (Sec. 4.4), and

• create others (“proxies”, Sec. 4.5).

The bulk of tree-rewriting and re-attribution however takes places during transform()

(Sec. 5).

4.1 Computing extra sets (i.e., populating the free map)

A method M1 (liftable or not) may call a liftable method M2 that captures
some value v defined outside M1. In this case, v should be marked as free in
the invoker too (i.e., in M1) irrespective of whether it contains a reference to v
or not (this is necessary to later add a conveyor param to M1 that will convey

13

the captured value when invoking M2). This iterative, upwards, percolation is
achieved by:

do {

changedFreeVars = false

for (caller <- called.keys ; callee <- called(caller) ; fvs <- free get callee ; fv <- fvs)

markFree(fv, caller)

} while (changedFreeVars)

Back in Sec. 3.1.2 a “(callee, caller)” arrangement is described where
the caller (a primary constructor) is tracked as “invoking” its declaring class.
Why? A class may have a non-empty extra set, in which case its constructor
should include those symbols in its own extra set (so as to assign from conveyor
params to extra fields). Summing up, the arrangement in question allows free
vars to “percolate upwards” from the class to its constructor.

Quoting from Altherr’s PhD report:

3.3.5 Generalized Algorithm

When classes are taken into account, the lambda lifting algorithm
stays the same except that extra sets are also computed for local
classes and local classes are augmented with an extra field for each
variable in their extra set. Like local functions, local classes are
attributed a call set and the extra sets of local classes are computed
the same way as the extra sets of local functions.

Constructors of local classes are treated like local functions defined
in the same scope as their class. While computing extra sets, it
is important to remember that a constructor is implicitly called in
each instance creation. Furthermore, the extra set of each primary
constructor has to be augmented with its class. Indeed, in the step
“parameter and argument addition”, the bodies of primary construc-
tors have to be augmented with code to initialize the extra fields of
their class.

Methods and inner classes are not treated like local functions and
local classes but are considered as a part of their enclosing class.
They remain in place and contribute to the free variables and the
call set of their enclosing class. So the free variables of a local class
are all the free variables that occur in its methods and in methods of
its inner classes.

4.2 Invariant for the free map (extra sets)

After extra sets have been computed (Sec. 4.1) the following holds:

free toList forall {

(enclosure, accessedVars)

=>

(enclosure.isMethod || enclosure.isClass) &&

(accessedVars forall {accessed => accessed.isTerm && !accessed.isMethod && accessed.isLocal })

}

TODO assert()

14

How was that established? An invocation of the form markFree(accessed,

enclosure) gets to decide whether accessed occurs free in enclosure, recording
that fact in the free map (a one-to-many map). Three conditions must be met
(simplifying somewhat):

1. the access should occur lexically within enclosure

2. accessed hasn’t been defined in enclosure

3. there is no class between enclosure’s owner accessed’s owner. The need
for this condition can be seen at the end of Sec. 1.5.

If met, free is updated (more mnemonics):

symSet(free, enclosure) addEntry accessed

≡
free.getOrElseUpdate(enclosure, new TreeSet[Symbol]) addEntry accessed

4.3 Scala.NET and markFree()

A lot of processing goes on in markFree, for example the following which has to
do with “proxying”.

TODO Scala.NET alarm: what now is an ObjectRefClass should be an Ref[T].

.NET valuetypes should have their their own ValueRef[T] (with T upperbounded by System.Value)

TODO Scala.NET alarm: what now is an ObjectRefClass should be an Ref[T].

.NET valuetypes should have their their own ValueRef[T] (with T upperbounded by System.Value)

if (sym.isVariable && !sym.hasFlag(CAPTURED)) {

sym setFlag CAPTURED

val symClass = sym.tpe.typeSymbol

atPhase(phase.next) {

sym updateInfo (

if (sym.hasAnnotation(VolatileAttr))

if (isValueClass(symClass))

volatileRefClass(symClass).tpe

else

VolatileObjectRefClass.tpe

else

if (isValueClass(symClass))

refClass(symClass).tpe

else

ObjectRefClass.tpe

)

}

}

4.4 Renaming of liftables and captured locals

Renaming applies uniformly to all liftables and captured locals, including value
params. For example, fargA is renamed to fargA$1, to avoid a name clash in
case ff() declared an fargA value param.

15

def f(fargA: Int) = {

def ff() = fargA

}

In the example below, renaming the value param is necessary because L gets an
extra field for it. Also in this case, L could (conceivably) have declared a field
with that name.

def f(fargA: Int) = {

class L { def ff() = fargA }

}

Please notice the following allows experimenting with alternative naming
schemes from the command line:

object NameTransformer {

// XXX Short term: providing a way to alter these without having to recompile

// the compiler before recompiling the compiler.

val MODULE_SUFFIX_STRING = sys.props.getOrElse("SCALA_MODULE_SUFFIX_STRING", "$")

val NAME_JOIN_STRING = sys.props.getOrElse("SCALA_NAME_JOIN_STRING", "$")

val MODULE_INSTANCE_NAME = "MODULE$"

4.5 Creating symbols for conveyor params and extra fields

By now the extra sets for different contexts (classes, methods, constructors)
have been determined, and captured locals have been renamed. Given those
extra sets, conveyor params (in methods and constructors) and extra fields (in
classes) will be needed to enable access to the captured locals.

Just before returning, computeFreeVars creates symbols for extra fields and
conveyor params, tracking them in the proxies map:

atPhase(phase.next) {

for ((owner, freeValues) <- free.toList) {

debuglog("free var proxy: %s, %s".format(owner.fullLocationString, freeValues.toList.mkString(", ")))

proxies(owner) =

for (fv <- freeValues.toList) yield {

val proxy = owner.newValue(owner.pos, fv.name)

.setFlag(if (owner.isClass) PARAMACCESSOR | PRIVATE | LOCAL else PARAM)

.setFlag(SYNTHETIC)

.setInfo(fv.info);

if (owner.isClass) owner.info.decls enter proxy;

proxy

}

}

}

5 Term rewriting

Conveyor params have to be added, callsites updated to pass the values of
captured locals or their proxies, constructors extended to initialize extra fields,
and some accesses (for symbols in an extra set) rewritten to access a conveyor
param or extra field instead (in the latter case, possibly over an outer-path).

16

Figure 4: Sec. 5

Basically, it’s postTransform (Sec. 5.1) that takes charge of “adding” Trees
(as listed above) except that it also removes (by transforming into EmptyTree)
liftable defs. But don’t worry, before LambdaLifter is done (Figure 4), those
liftable defs will happily live thereafter as lifted defs in their new home: transformStats

is responsible for “pasting” the Tree of a liftable definition in its enclClass. The
“cut” part is performed in postTransform (more specifically it’s liftDef(tree1)

that does it).

5.1 postTransform

5.1.1 Adding conveyor params and extra fields

Symbols for conveyor params and for extra fields were created back in computeFreeVars

(Sec. 4.5) and now it’s addFreeParams() chance to add Trees for them:

case ClassDef(_, _, _, _) =>

val tree1 = addFreeParams(tree, sym)

if (sym.isLocal) liftDef(tree1) else tree1

case DefDef(_, _, _, _, _, _) =>

val tree1 = addFreeParams(tree, sym)

if (sym.isLocal) liftDef(tree1) else tree1

17

5.1.2 Rewrite the definition site of a proxied ValDef

case ValDef(mods, name, tpt, rhs) =>

if (sym.isCapturedVariable) {

val tpt1 = TypeTree(sym.tpe) setPos tpt.pos

/* Creating a constructor argument if one isn’t present. */

val constructorArg = rhs match {

case EmptyTree =>

sym.primaryConstructor.info.paramTypes match {

case List(tp) => gen.mkZero(tp)

case _ =>

log("Couldn’t determine how to properly construct " + sym)

rhs

}

case arg => arg

}

treeCopy.ValDef(tree, mods, name, tpt1, typer.typedPos(rhs.pos) {

Apply(Select(New(TypeTree(sym.tpe)), nme.CONSTRUCTOR), List(constructorArg))

})

} else tree

5.1.3 Adding conveyor arguments (for methods and constructors)

case Apply(fn, args) =>

treeCopy.Apply(tree, fn, addFreeArgs(tree.pos, sym, args))

5.1.4 Accesses to captured locals and invocations to local methods

case Ident(name) =>

val tree1 =

if (sym != NoSymbol && sym.isTerm && !sym.isLabel)

if (sym.isMethod)

atPos(tree.pos)(memberRef(sym))

else if (sym.isLocal && !isSameOwnerEnclosure(sym))

atPos(tree.pos)(proxyRef(sym))

else tree

else tree

if (sym.isCapturedVariable)

atPos(tree.pos) {

val tp = tree.tpe

val elemTree = typer typed Select(tree1 setType sym.tpe, nme.elem)

if (elemTree.tpe.typeSymbol != tp.typeSymbol) gen.mkAttributedCast(elemTree, tp) else elemTree

}

else tree1

5.1.5 Bring initializers for lazy vals and modules to Block start

case Block(stats, expr0) =>

val (lzyVals, rest) = stats.partition {

case stat@ValDef(_, _, _, _) if stat.symbol.isLazy => true

case stat@ValDef(_, _, _, _) if stat.symbol.hasFlag(MODULEVAR) => true

case _ => false

}

treeCopy.Block(tree, lzyVals:::rest, expr0)

18

Listing 3: Sec. 5.2

/** Transform statements and add lifted definitions to them. */

override def transformStats(stats: List[Tree], exprOwner: Symbol): List[Tree] = {

def addLifted(stat: Tree): Tree = stat match {

/*- this class becomes host to lifted definitions. */

case ClassDef(mods, name, tparams, impl @ Template(parents, self, body)) =>

/*- recursively */

val lifted = liftedDefs(stat.symbol) reverseMap addLifted

val result = treeCopy.ClassDef(

stat, mods, name, tparams, treeCopy.Template(impl, parents, self, body ::: lifted))

liftedDefs -= stat.symbol

result

/*- minor clean up of expression-valued method. */

case DefDef(mods, name, tp, vp, tpt, Block(Nil, expr)) if !stat.symbol.isConstructor =>

treeCopy.DefDef(stat, mods, name, tp, vp, tpt, expr)

/*- do nothing. */

case _ => stat

}

super.transformStats(stats, exprOwner) map addLifted

}

5.1.6 Misc

case Return(Block(stats, value)) =>

Block(stats, treeCopy.Return(tree, value)) setType tree.tpe setPos tree.pos

case Return(expr) =>

assert(sym == currentMethod, sym)

tree

case Assign(Apply(TypeApply(sel @ Select(qual, _), _), List()), rhs) =>

// eliminate casts introduced by selecting a captured variable field

// on the lhs of an assignment.

assert(sel.symbol == Object_asInstanceOf)

treeCopy.Assign(tree, qual, rhs)

case _ =>

tree

5.2 Pasting lifted trees: transformStats (including addLifted)

Listing 3 has been slightly edited to elide non-essential stuff. It shows that
transformStats does a main thing and an auxiliary one:

1. it returns a ClassDef with an augmented template (augmented with the
lifted Trees that were waiting in the liftedDefs map).

2. it cleans up the rhs of expression-valued methods.

19

Listing 4: Sec. 6

private val lifted = new TypeMap {

def apply(tp: Type): Type = {

tp match {

case TypeRef(NoPrefix, sym, Nil) if sym.isClass && !sym.isPackageClass =>

val newPrefix = apply(sym.owner.enclClass.thisType)

typeRef(newPrefix, sym, Nil)

case ClassInfoType(parents, decls, clazz) =>

val parents1 = parents mapConserve this

if (parents1 eq parents) tp

else ClassInfoType(parents1, decls, clazz)

case _ => mapOver(tp)

}

}

}

6 Type rewriting

The lifted TypeMap (shown in Listing 4) is used

• in transformInfo(),

• to updateInfo of a method or constructor’s symbol (after lifting or after
adding conveyor params, resp.)

• as the very last mutation of a tree node during term rewriting.

Details:

References

[1] Philippe Altherr. A Typed Intermediate Language and Algorithms for Com-
piling Scala by Successive Rewritings. PhD thesis, EPFL Lausanne, Switzer-
land, 2006. http://library.epfl.ch/theses/?nr=3509.

20

http://library.epfl.ch/theses/?nr=3509

	Intro
	Terminology
	Recipe
	Example 1: Lifting a local method (loop in fold)
	Example 2: Lifting a local class (anonymous closure)
	Example 3: Interplay with outer instances

	A 10'000-ft view of the code
	A brief choreography of lifting
	Need to know before delving: OuterPathTransformer

	Gathering information for later: freeVarTraverser
	Call graph
	callee is method or constructor
	callee is class

	Postconditions after freeVarTraverser has run

	Before nodes are transformed: computeFreeVars
	Computing extra sets (i.e., populating the free map)
	Invariant for the free map (extra sets)
	Scala.NET and markFree()
	Renaming of liftables and captured locals
	Creating symbols for conveyor params and extra fields

	Term rewriting
	postTransform
	Adding conveyor params and extra fields
	Rewrite the definition site of a proxied ValDef
	Adding conveyor arguments (for methods and constructors)
	Accesses to captured locals and invocations to local methods
	Bring initializers for lazy vals and modules to Block start
	Misc

	Pasting lifted trees: transformStats (including addLifted)

	Type rewriting

