
A source-level, automatic API migration

that preserves layout (a story of range positions)

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

January 10th, 2011

Abstract

Whether you’re interested in unparsing, pretty-printing, or refactoring of
Scala ASTs, chances are high you’ll have to do with tree positions, in
particular of the range variety as results from -Yrangepos. This write-up
summarizes some findings about them, gained while developing an API
migration tool (jdk2ikvm).

Contents

1 Background 2
1.1 How to build and run . 2
1.2 Motivation . 2
1.3 Implementing the “String instance helpers” transformation . . . 3

2 Invariants for tree positions 4

3 validatePositions 5
3.1 Enclosing-enclosed tree pairs . 6
3.2 Overlap tests for children of ranged trees 6
3.3 Tests for solid descendants . 6

4 Debug session 7
4.1 Accessing a package object . 7

4.1.1 Solution . 8
4.2 Accessing this . 9

4.2.1 After typer . 9
4.2.2 After parser . 9
4.2.3 Where it gets transformed 9

1

http://lamp.epfl.ch/~magarcia

1 Background

1.1 How to build and run

Build and run instructions for jdk2ikvm can be found in Sec. 1 of:

• Learning and doing scalac transformations the easy way: via unparsing1

Other related write-ups:

• Bits and pieces of information about the parser, namer, and typer phases
that turn out to be necessary just to be able to unparse Scala ASTs2

• Unparsing types the Scaladoc way3

1.2 Motivation

Say we want to perform the following transformation (as required by the JDK
to IKVM conversion recipe):

/* Example:

* "abc".length

* -->

* java.lang.String.instancehelper_length("abc")

*/

In order to preserve layout, for different cases of Apply nodes (with and without
args, parens around args or not, using dot notation or not), we have to deal
with examples as the following:

(Please notice that invocations of JDK methods do not make use of named
arguments, thus we need not consider them).

x1 = "abc".substring(0, AboutPositions.this.padding)

app |--|[106:153]

fun |--------------| [106:121]

quali |----| [106:111]

arg0 || [122:123]

arg1 |--------------------------| [125:152]

x2 = "def".length

app |-----------|[185:197]

fun |-----------|[185:197]

quali |----| [185:190]

x3 = "xyz".isEmpty()

app |--------------|[236:251]

fun |------------| [236:249]

quali |----| [236:241]

1http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/Unparsing.

pdf
2http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/unpasynth.

pdf
3http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/

TypesScaladocWay.pdf

2

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/Unparsing.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/Unparsing.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/unpasynth.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/unpasynth.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/TypesScaladocWay.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/TypesScaladocWay.pdf

x4 = "xyz" indexOf ’n’

app |----------------|[290:307]

fun |------------| [290:303]

quali |----| [290:295]

arg0 |--|[304:307]

x5 = "abc" substring (0 , 3)

app |-------------------------|[341:367]

fun |--------------| [341:356]

quali |----| [341:346]

arg0 || [358:359]

arg1 || [365:366]

1.3 Implementing the “String instance helpers” transfor-
mation

We have to gather first the ranges for those sub-expressions that might be
rewritten by other transformations. Afterwards, place them in the order they
should appear in the output, with any additional (fixed) text as Insert patch
commands.

It remains to explain how a “patch tree” organizes the “patch commands” it
receives (by nesting patch commands for sub-expressions within that for its con-
taining expression, where “nesting” follows the interval inclusion relationship,
where “interval” is a closed non-empty integer interval, where the “integer”
denotes an offset in the Array[Char] given by SourceFile.content).

Armed with the intuition above, I hope the code below makes some sense (we
have to start somewhere):

val buf = mutable.ListBuffer.empty[PatchCmd]

// new (static) receiver

buf += new Insert("java.lang.String.instancehelper_" + originalName + "(")

// new first argument

buf += new Patcheable(qualiPos.start, qualiPos.end - 1)

// existing arguments if any

if(!args.isEmpty) {

buf += new Insert(", ")

val headPos = args.head.pos.asInstanceOf[RangePosition]

val lastPos = args.last.pos.asInstanceOf[RangePosition]

buf += new Patcheable(headPos.start, lastPos.end - 1)

}

buf += new Insert(")")

patchtree.tryPatch(appPos.start, appPos.end - 1, buf.toList, dropGapsOK = true)

After exploring the code for a “patch tree” you might wonder why a custom
data structure was used rather than a self-balancing tree of closed intervals.
In order to use a TreeSet, a total order is necessary, while interval-inclusion
determines a poset. Although an artificial Ordering could still have been defined
by adding, say, “arrival order” to the less-or-equal criteria, in fact we want to
leverage a feature of the rewritings that results from the pre-order traversal of
ASTs we follow: enclosing expressions are rewritten first, i.e. rewritings with the
longest ranges send first “patch commands” to the patch tree. Once the nodes
for them have been added, rewritings for sub-expressions just result in more

3

leaves added. The resulting custom data structure is fast, both for additions
and during traversal for serializing into the output file.

2 Invariants for tree positions

Quoting from RangePositions.scala:

Handling range positions

atPos, the main method in this trait, will add positions to a tree, and
will ensure the following properties:

• INV-A: All nodes between the root of the tree and nodes that
already have positions will be assigned positions.

• INV-B: No node which already has a position will be assigned
a different range; however a RangePosition might become a
TransparentPosition.

• INV-C: The position of each assigned node includes the posi-
tions of each of its children.

• INV-D: The positions of all solid descendants of children of an
assigned node are mutually non-overlapping.

Here, the solid descendant of a node are:

• If the node has a TransparentPosition, the solid descendants of
all its children

• Otherwise, the singleton consisting of the node itself.

Quoting from scala.tools.nsc.util.Position:

The Position class and its subclasses represent positions of ASTs
and symbols. Except for NoPosition and FakePos, every position
refers to a SourceFile and to an offset in the sourcefile (its ‘point’).
For batch compilation, that’s all. For interactive IDE’s there are also
RangePositions and TransparentPositions. A RangePosition indi-
cates a start and an end in addition to its point. TransparentPositions
are a subclass of RangePositions. Range positions that are not trans-
parent are called opaque. Trees with RangePositions need to satisfy
the following invariants.

• INV1: A tree with an offset position never contains a child with
a range position

4

Figure 1: validatePositions, Sec. 2

• INV2: If the child of a tree with a range position also has a
range position, then the child’s range is contained in the par-
ent’s range.

• INV3: Opaque range positions of children of the same node are
non-overlapping (this means their overlap is at most a single
point).

. . .

3 validatePositions

At its core, validation (Figure 1) looks at non-empty trees and its solid descen-
dants. Two kinds of tests are performed: (a) those for enclosing-enclosed tree
pairs, and (b) overlap tests for children; as reviewed in the next two subsec-
tions. Tests for solid descendants do not involve actually any more tests, the
just recursively perform (a) and (b) as shown in Sec. 3.3.

The big picture:

def validate(tree: Tree, encltree: Tree): Unit = {

if (tree.isEmpty) return

val brokenRules = ListBuffer.empty[String]

// ranged or not, tests about (enclosing) definedness

if (!tree.pos.isDefined) brokenRules += "Non-empty implies defined position"

if (!encltree.pos.isDefined && tree.pos.isDefined) brokenRules += "Undefined can’t enclose defined"

// tests for range trees only

rangedTreeTests(tree, encltree, brokenRules)

reportBroken(tree, encltree, brokenRules)

// skip transparent descendants, recurse to solid descendants only

for (ct <- tree.children flatMap solidDescendants) validate(ct, tree)

}

5

3.1 Enclosing-enclosed tree pairs

Most of the enclosing-enclosed tests apply to a ranged enclosed tree, but the
following is expected of all trees:

// ranged or not, tests about (enclosing) definedness

if (!tree.pos.isDefined)

brokenRules += "Non-empty implies defined position"

if (!encltree.pos.isDefined && tree.pos.isDefined)

brokenRules += "Undefined can’t enclose defined"

Three enclosing-related tests are for ranged trees only:

/** range in range only, coverage by enclosing, and non-overlap of ranged-over) */

def rangedTreeTests(tree: Tree, encltree: Tree, brokenRules: ListBuffer[String]) {

if (!tree.pos.isRange) return

if (!encltree.pos.isRange) brokenRules += "A range must have a range parent"

if (!(encltree.pos includes tree.pos)) brokenRules += "Enclosing must cover enclosed"

// The positions of all solid descendants of children of an assigned node are mutually non-overlapping.

. . . findOverlapping, see below

}

3.2 Overlap tests for children of ranged trees

// The positions of all solid descendants of children of an assigned node are mutually non-overlapping.

findOverlapping(tree.children flatMap solidDescendants) match {

case List() => ;

case xs => {

reportBroken("Overlapping trees "+xs.map { case (x, y) => (x.id, y.id) }.mkString("", ", ", ""), tree)

for((x, y) <- xs) {

describe(x, "First overlapping ")

describe(y, "Second overlapping ")

}

}

}

3.3 Tests for solid descendants

What is tested for solid descendants has been reviewed above (Sec. 3.1 and
Sec. 3.2), invoked recursively:

def validate(tree: Tree, encltree: Tree): Unit = {

if (tree.isEmpty) return

val brokenRules = ListBuffer.empty[String]

// ranged or not, tests about (enclosing) definedness

if (!tree.pos.isDefined) brokenRules += "Non-empty implies defined position"

if (!encltree.pos.isDefined && tree.pos.isDefined) brokenRules += "Undefined can’t enclose defined"

// tests for range trees only

rangedTreeTests(tree, encltree, brokenRules)

reportBroken(tree, encltree, brokenRules)

/*- skip transparent descendants, recurse to solid descendants only */

for (ct <- tree.children flatMap solidDescendants) validate(ct, tree) /*- <----- HERE */

}

6

4 Debug session

4.1 Accessing a package object

• The AST for the expression math.max(stacksize, that.getStacksize())

has a Select of the form scala.math.package which is not ranged, while
its enclosed scala.math is ranged. Thus we get “Range in range only
broken”.

• And given that the enclosing node has an offset position, the enclosed
range (which is non-zero length) isn’t covered, thus earning us another
error message.

After parser, a math.max(1, 2) expressions looks as follows:

Apply(// sym=<none>, tpe=null

Select(// sym=<none>, sym.tpe=<notype>, tpe=null

Ident("math"), // sym=<none>, sym.tpe=<notype>, tpe=null,

"max"),

List(// 2 arguments(s)

Literal(Constant(1)),

Literal(Constant(2))

)

)

i.e. there’s as of yet no Select with nme.PACKAGEkw. That’s added in Typers.scala,
by makeAccessible:

/** Make symbol accessible. This means:

* If symbol refers to package object, insert ‘.package‘ as second to last selector.

* (exception for some symbols in scala package which are dealiased immediately)

* Call checkAccessible, which sets tree’s attributes.

* Also note that checkAccessible looks up sym on pre without checking that pre is well-formed

* (illegal type applications in pre will be skipped -- that’s why typedSelect wraps the resulting tree in a TreeWithDeferredChecks)

* @return modified tree and new prefix type

*/

private def makeAccessible(tree: Tree, sym: Symbol, pre: Type, site: Tree): (Tree, Type) =

Figure 2 shows the after-transform result, with the offset position dominating
a range position, where atPos was given a tree.pos.focusStart as the following
excerpt shows:

val qual = typedQualifier { atPos(tree.pos.focusStart) {

tree match {

case Ident(_) => Ident(nme.PACKAGEkw)

case Select(qual, _) => Select(qual, nme.PACKAGEkw)

case SelectFromTypeTree(qual, _) => Select(qual, nme.PACKAGEkw)

}

}}

To confirm, after typer our tree now looks like:

Apply(// sym=method max, tpe=Int, tpe.sym=class Int, tpe.sym.owner=package scala

Select(// sym=method max, sym.owner=class MathCommon, sym.tpe=(x: Int,y: Int)Int, tpe=(x: Int,y: Int)Int, tpe.sym=<none>

Select(// sym=package object math, sym.owner=package math, sym.tpe=object scala.math.package, tpe=math.package.type, tpe.sym=package object math, tpe.sym.owner=package math,

Select(// sym=package math, sym.owner=package scala, sym.tpe=package math, tpe=math.type, tpe.sym=package math, tpe.sym.owner=package scala

Ident("scala"), // sym=package scala, sym.owner=package <root>, sym.tpe=package scala, tpe=type, tpe.sym=package scala, tpe.sym.owner=package <root>,

"math"),

7

Figure 2: Sec. 4.1

"package"),

"max"),

List(// 2 arguments(s)

Literal(Constant(1)),

Literal(Constant(2))

)

)

4.1.1 Solution

The atPos invoked above is this one:

def atPos[T <: Tree](pos: Position)(tree: T): T = {

posAssigner.pos = pos

posAssigner.traverse(tree)

tree

}

not the one in RangePositions.scala:

/** Position a tree.

* This means: Set position of a node and position all its unpositioned children.

*/

override def atPos[T <: Tree](pos: Position)(tree: T): T =

if (pos.isOpaqueRange) {

if (!tree.isEmpty && tree.pos == NoPosition) {

tree.setPos(pos)

val children = tree.children

if (children.nonEmpty) {

if (children.tail.isEmpty) atPos(pos)(children.head)

else setChildrenPos(pos, children)

}

}

tree

} else {

super.atPos(pos)(tree)

}

8

4.2 Accessing this

Another popular error is:

[treepos] Rule "Non-empty implies defined position" broken by:

non-synthetic tree [119], of type This with <nopos> position, located at [NoPosition]<nopos>

immutable.this

In context:

non-synthetic tree [120], of type Select with opaque-range position, located at [66:70]bt4.scala

immutable.this.List

4.2.1 After typer

Apply(// sym=method apply, tpe=List[Int], tpe.sym=class List, tpe.sym.owner=package immutable

TypeApply(// sym=method apply, tpe=(xs: Int*)List[Int], tpe.sym=<none>

Select(// sym=method apply, sym.owner=object List, sym.tpe=[A](xs: A*)List[A], tpe=[A](xs: A*)List[A], tpe.sym=<none>

Select(// sym=object List, sym.owner=package immutable, sym.tpe=object List, tpe=scala.collection.immutable.List.type, tpe.sym=object List, tpe.sym.owner=package immutable

This("immutable"), // sym=package immutable, sym.owner=package collection, sym.tpe=package scala.collection.immutable, tpe=scala.collection.immutable.type, tpe.sym=package immutable, tpe.sym.owner=package collection

"List"),

"apply"),

List(

TypeTree() // sym=class Int, tpe=Int, tpe.sym=class Int, tpe.sym.owner=package scala

)

),

List(// 2 arguments(s)

Literal(Constant(3)),

Literal(Constant(4))

)

)

4.2.2 After parser

Apply(// sym=<none>, tpe=null

Ident("List"), // sym=<none>, sym.tpe=<notype>, tpe=null,

List(// 2 arguments(s)

Literal(Constant(3)),

Literal(Constant(4))

)

)

4.2.3 Where it gets transformed

Has to do with TypeApply in Typers.scala, details coming soon :-)

9

	Background
	How to build and run
	Motivation
	Implementing the ``String instance helpers'' transformation

	Invariants for tree positions
	validatePositions
	Enclosing-enclosed tree pairs
	Overlap tests for children of ranged trees
	Tests for solid descendants

	Debug session
	Accessing a package object
	Solution

	Accessing this
	After typer
	After parser
	Where it gets transformed

