
GOTO elimination for Scala ASTs

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

February 10th, 2011

Abstract

Unparsing, translations (for example into JavaScript or C# 3.0) and
many other tasks have a hard time dealing with the jumps introduced by
TransMatch. We want to develop a custom compiler phase that rephrases
those AST subtrees (in a semantics-preserving manner) for reuse by other
compiler plugins (such as the unparser and backends targeting goto-less
languages). Previous work on GOTO elimination does result in some
(minor) performance degradation for programs with high GOTO density.
This has to be weighed against the additional optimizations applicable to
programs exhibiting structured control flow. We consider the algorithm
devised by Erosa and Hendren [2], as well as the changes required to
manipulate Scala ASTs.

1

http://lamp.epfl.ch/~magarcia

Contents

1 How to build and run 3

2 Background 3
2.1 Problem statement . 3
2.2 Running example after GOTO elimination 3
2.3 Theory on GOTO statement elimination 4
2.4 Sidenote: breaking with the habit of C’s break and continue . . 4
2.5 What about backends for languages with “structured-GOTO” . . 5

3 AST shapes of interest 5
3.1 Non-problematic LabelDef-Apply shapes 5
3.2 How GenICode translates LabelDefs and jumps 6
3.3 Those Match nodes surviving TransMatch have switch semantics 8
3.4 try-catch-finally . 8

4 Before GOTO elimination 9
4.1 LabelDef-Apply in Scala vs. goto-label in C 9
4.2 Block flattening . 10
4.3 Checking of preconditions . 11
4.4 Classifying LabelDef-Apply pairs 12
4.5 Checking postconditions . 13
4.6 Gaining details about tree shapes 13
4.7 In terms of our running example 15

5 Adapting the Erosa-Hendren algorithm to Scala 16
5.1 Transform for sibling pairs . 16
5.2 Outward movement transform . 16
5.3 Inward movement transform . 16
5.4 Putting it all together . 16

6 Related Work 17
6.1 Decompiling Scala into Java . 17
6.2 Translating Scala ASTs into JavaScript 17

7 Future Work 17
7.1 A new backend for the Scala.Net compiler to emit C# sources . . 17

2

1 How to build and run

1. compile all Scala source files from http://lampsvn.epfl.ch/trac/scala/

browser/scala-experimental/trunk/gotoelim

2. say the resulting classfiles are found at myplugins\gotoelim\classes

3. prepare the gotoelim.jar as follows

del gotoelim.jar

jar -cf gotoelim.jar -C myplugins\gotoelim\classes scala -C myplugins\gotoelim\resources\ .

4. where myplugins\gotoelim\resources contains the plugin manifest scalac-plugin.xml

<plugin>

<name>gotoelim</name>

<classname>scala.tools.gotoelim.GotoElimPlugin</classname>

</plugin>

Afterwards, just run scalac with -Xplugin where/to/find/gotoelim.jar.

2 Background

2.1 Problem statement

The issue has been reported a number of times1.

class YouBadPatternMatcher {

def problematicPattern = {

try {

0

} catch {

case x: Exception if x.getMessage == "test" => println("first case " + x)

case x => println("second case " + x)

}

}

}

After the cleanup phase, the fragment above is reduced as shown in Listing 1
(to reproduce, run the compiler with -uniqid -Xprint:cleanup).

Please notice that the jump in question can also not be expressed in lan-
guages with “structured goto” (such as C#) because the target instruction is
not directly contained in an outer block (but two blocks deep inside the nearest
common block for jump source and target).

2.2 Running example after GOTO elimination

Our plugin should rephrase the program from Listing 1 as shown in Listing 3
and Listing 4.

1http://www.scala-lang.org/node/7423

3

http://lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/gotoelim
http://lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/gotoelim
http://www.scala-lang.org/node/7423

2.3 Theory on GOTO statement elimination

• Ana M. Erosa and Laurie J. Hendren. Taming Control Flow: A Structured
Approach to Eliminating GOTO Statements2 In ICCL, 1994.

• Todd A. Proebsting and Scott A. Watterson.
Krakatoa: Decompilation in Java (does bytecode reveal source?)3

GOTO removal is popular when “levitating” legacy code into some “higher-
level” form:

• http://selab.fbk.eu/ceccato/papers/2008/csmr2008.html

• http://home.comcast.net/~refilman/text/invision/nogo.pdf

Other general references:

• http://www.program-transformation.org/Transform/JavaDecompilers

• http://www.sable.mcgill.ca/dava/

2.4 Sidenote: breaking with the habit of C’s break and
continue

Quoting from the Scala FAQ, http://www.scala-lang.org/node/257:

These keywords are not included in Scala 2.7, and must be imple-
mented in a different way. For break, the simplest thing to do is
to divide your code into smaller methods and use the return to exit
early. For continue, a simple approach is to place the skipped-over
parts of a loop into an if.

Scala 2.8 will include break, but not continue.

What Scala 2.8 includes are library abstractions in scala.util.control. Discus-
sions in reverse chronological order:

• http://www.scala-lang.org/node/3638

• http://www.scala-lang.org/node/2065

• http://www.scala-lang.org/node/1792

• http://www.scala-lang.org/node/1229

2http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.9516
3http://www.usenix.net/publications/library/proceedings/coots97/full_papers/

proebsting2/proebsting2.pdf

4

http://selab.fbk.eu/ceccato/papers/2008/csmr2008.html
http://home.comcast.net/~refilman/text/invision/nogo.pdf
http://www.program-transformation.org/Transform/JavaDecompilers
http://www.sable.mcgill.ca/dava/
http://www.scala-lang.org/node/257
http://www.scala-lang.org/node/3638
http://www.scala-lang.org/node/2065
http://www.scala-lang.org/node/1792
http://www.scala-lang.org/node/1229
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.9516
http://www.usenix.net/publications/library/proceedings/coots97/full_papers/proebsting2/proebsting2.pdf
http://www.usenix.net/publications/library/proceedings/coots97/full_papers/proebsting2/proebsting2.pdf

2.5 What about backends for languages with “structured-
GOTO”

GOTO elimination is also necessary for (future) backends (Sec. 7.1) targeting
languages with “structured-GOTO”. For example, C# does include a goto state-
ment, but basically only allowing inner-to-outer control transfers. Quoting from
the C# 3.0 spec:

The target of a goto identifier statement is the labeled statement
with the given label. If a label with the given name does not exist in
the current function member, or if the goto statement is not within
the scope of the label, a compile-time error occurs. This rule permits
the use of a goto statement to transfer control out of a nested scope,
but not into a nested scope.

The target of a goto case statement is the statement list in the imme-
diately enclosing switch statement (§8.7.2), which contains a case

label with the given constant value. If the goto case statement is
not enclosed by a switch statement, if the constant-expression is
not implicitly convertible (§6.1) to the governing type of the nearest
enclosing switch statement, or if the nearest enclosing switch state-
ment does not contain a case label with the given constant value, a
compile-time error occurs.

The target of a goto default statement is the statement list in the
immediately enclosing switch statement (§8.7.2), which contains a
default label. If the goto default statement is not enclosed by a
switch statement, or if the nearest enclosing switch statement does
not contain a default label, a compile-time error occurs.

A goto statement cannot exit a finally block (§8.10). When a goto

statement occurs within a finally block, the target of the goto state-
ment must be within the same finally block, or otherwise a compile-
time error occurs.

3 AST shapes of interest

3.1 Non-problematic LabelDef-Apply shapes

Some LabelDef-Apply shapes denote do-while and while loops. Their implied
GOTOs are not going to be eliminated. The snippet below detects them, also in
case the “goto part” was unnested from its block (block flattening is covered in
Sec. 4.2). In the example unnesting occurs if the block contains just that Apply

(of the form Apply(Ident, List())), i.e. for an infinite loop as in while(true){}.

def isWhileLoop(tree: LabelDef): Boolean = tree match {

// while (cond) body ==> LabelDef($L, List(), if (cond) { body; L$() } else ())

case lab @ LabelDef(name, List(),

If(cond, thenp @ Block(stats, laCall @ Apply(laCallFun : Ident, List())), _))

if(lab.symbol eq laCallFun.symbol) => true

// this case results from BlockFlattening

case lab @ LabelDef(name, List(),

5

Figure 1: Sec. 3.2

If(cond, laCall @ Apply(laCallFun : Ident, List()), _))

if(lab.symbol eq laCallFun.symbol) => true

case _ => false

}

def isDoWhileLoop(tree: LabelDef): Boolean = tree match {

// do body while (cond) ==> LabelDef($L, List(), body; if (cond) L$() else ())

case lab @ LabelDef(_, List(), Block(stats, If(cond, laCall @ Apply(laCallFun : Ident, List()), _)))

if(lab.symbol eq laCallFun.symbol) => true

// this case results from BlockFlattening

case lab @ LabelDef(_, List(), If(cond, laCall @ Apply(laCallFun : Ident, List()), _))

if(lab.symbol eq laCallFun.symbol) => true

case _ => false

}

3.2 How GenICode translates LabelDefs and jumps

The translation into ICode of LabelDef is shown in Figure 1 and that of a
jumping Apply in Figure 2.

A LabelDef receives arguments (and a jumping Apply provides them) which
amounts to assigning method-local vars at the point of jump (assignments ef-
fected by ICode STORE THIS and STORE LOCAL instructions), as shown below.

These method-local vars present no problem for GOTO elimination, because:

• they aren’t used for any purpose other than communicating values from
the source of the jump to its destination; and

• the transformed program follows the same execution paths (for similar
inputs) as before transformation. That means, for each execution path

6

Figure 2: Sec. 3.2

reaching a LabelDef, the same initialization (or lack thereof) as in the
original program will have occurred for those variables.

/**

* Generate code that loads args into label parameters.

*/

private def genLoadLabelArguments(args: List[Tree], label: Label, ctx: Context): Context = {

if (settings.debug.value) {

assert(args.length == label.params.length,

"Wrong number of arguments in call to label " + label.symbol)

}

var ctx1 = ctx

def isTrivial(kv: (Tree, Symbol)) = kv match {

case (This(_), p) if p.name == nme.THIS => true

case (arg @ Ident(_), p) if arg.symbol == p => true

case _ => false

}

val stores = args zip label.params filterNot isTrivial map {

case (arg, param) =>

val local = ctx.method.lookupLocal(param).get

ctx1 = genLoad(arg, ctx1, local.kind)

val store =

if (param.name == nme.THIS) STORE_THIS(toTypeKind(ctx1.clazz.symbol.tpe))

else STORE_LOCAL(local)

store setPos arg.pos

}

// store arguments in reverse order on the stack

7

ctx1.bb.emit(stores.reverse)

ctx1

}

3.3 Those Match nodes surviving TransMatch have switch

semantics

/**

* Pattern matching expression (before explicitouter)

* Switch statements (after explicitouter)

*

*

* After explicitouter, cases will satisfy the following constraints:

*

* - all guards are EmptyTree,

* - all patterns will be either Literal(Constant(x:Int))

* or Alternative(lit|...|lit)

* except for an "otherwise" branch, which has pattern

* Ident(nme.WILDCARD)

*/

case class Match(selector: Tree, cases: List[CaseDef])

extends TermTree

Please glean the rest of the meaning of Match nodes from the GenICode snippet
shown in Listing 2 on p. 19 and from the following snippet for ICode’s SWITCH

instruction.

/** This class represents a SWITCH instruction

* Stack: ...:index(int)

* ->: ...:

*

* The tags array contains one entry per label, each entry consisting of

* an array of ints, any of which will trigger the jump to the corresponding label.

* labels should contain an extra label, which is the ’default’ jump.

*/

case class SWITCH(tags: List[List[Int]], labels: List[BasicBlock]) extends Instruction {

/** Returns a string representation of this instruction */

override def toString(): String ="SWITCH ..."

override def consumed = 1

override def produced = 0

}

3.4 try-catch-finally

At the level of Scala sources, occurrences of try-catch, try-finally, and try-catch-finally

are possible. The spec states that the third pattern is semantically equivalent
to a finally protecting a try-catch expression. However this semantic equiv-
alence is not reflected in ASTs, where try-catch-finally is not represented as
two nested try statements but as a single node:

case class Try(block: Tree, catches: List[CaseDef], finalizer: Tree)

extends TermTree

8

The desugaring of try-catch-finally can only be seen at GenICode time. Quot-
ing from GenICode.scala:

/** try-catch-finally blocks are actually simpler to emit in MSIL, because there

* is support for ‘finally‘ in bytecode.

*

* A

* try { .. } catch { .. } finally { .. }

* block is de-sugared into

* try { try { ..} catch { .. } } finally { .. }

*

* In ICode ‘finally‘ block is represented exactly the same as an exception handler,

* but with ‘NoSymbol‘ as the exception class. The covered blocks are all blocks of

* the ‘try { .. } catch { .. }‘.

*

* Also, TryMsil does not enter any Finalizers into the ‘cleanups’, because the

* CLI takes care of running the finalizer when seeing a ‘leave’ statement inside

* a try / catch.

*/

def TryMsil(body: Context => Context,

handlers: List[(Symbol, TypeKind, (Context => Context))],

finalizer: Tree,

tree: Tree) = {

4 Before GOTO elimination

Erosa and Hendren [2] devised an algorithm to transform a C program contain-
ing arbitrary GOTO statements into a version where only break and continue

are used in addition to if/else, while-loop, and switch. In this section, we
gather information in order to answer (in Sec. 5) the following questions:

1. which of the original transformations in [2] are applicable as-is to Scala
ASTs (maybe a subset of all transforms?); and

2. which changes are needed to avoid introducing break and continue.

Regarding the interplay of GOTO elimination with:

• try-catch-finally: Jumps are introduced only for match expressions, thus
jumps are not only intra-method but moreover always enclosed within
some expression (thus, a jump cannot straddle between a protected block
in a try clause to a case clause in a catch, for example).

• runtime exceptions (e.g., division by zero): the transformation we’ll apply
does not alter the lexical nesting of try-catch-finally, and thus preserves
exceptional behavior, in particular upon exceptions thrown implicitly by
the VM.

4.1 LabelDef-Apply in Scala vs. goto-label in C

A LabelDef-Apply pair denotes two tree nodes, where the symbol of the LabelDef

indicates it’s the target of the jump given by the Apply. More than one jump
may target the same LabelDef.

9

We start the development of the gotoelim compiler plugin by writing the
code in charge of reporting which tree nodes require transformation. Based
on the classification of goto-label pairs in [2], we classify LabelDef-Apply pairs
into:

• do-while and while loops: these LabelDef-Apply pairs are left as-is.

• “sibling” pairs.

• “directly related” pairs, i.e., cases 3(a) and 3(b) in [2].

• “indirectly related”, i.e., cases 3(c) and 3(d) in the paper. Difference
between them: the nearest enclosing statement stmt k is a block in 3(c) as
opposed to an if or switch in 3(d). In terms of the paper’s notation, stmt k

is a composite statement that encloses (directly or indirectly) stmt i and
stmt j.

Some pre- and post-conditions for the classification above:

• Precondition (1 of 3): each jump should have a matching LabelDef.

• Precondition (2 of 3): A LabelDef not targeted by any jump should have
no params, in which case it can be replaced by its rhs.

• Precondition (3 of 3): Regarding try-catch-finally, jumps do not strad-
dle protected regions.

• Postcondition: For a given Scala program P , any of the categories above
may be empty, but every LabelDef-Apply pair in the AST of P should
belong to exactly one of the categories above.

When populating the categories above, AST visiting could be kept to a minimum
in case TransMatch would tell us which trees correspond to rewritten Match nodes
(the jumps we want to eliminate don’t appear anywhere else). Failing that, we
have to visit all outermost expressions.

We get back to the classification procedure, and its pre and postconditions
in Sec. 4.3 ff., but before we have to discuss block flattening.

4.2 Block flattening

The algorithm we’ll use to eliminate GOTOs relies on the notion of statement
sequence, where the only composite statements are loops (their body is a state-
ment sequence), if/else, and switch. Additionally, a C procedure body is also
a statement sequence.

In our case we have other composite statements (e.g., try-catch-finally)
but we can get closer to the expected formulation of “statement sequences” by
unnesting those statements in a block contained in another block. We call this
block flattening.

The tree-rewriting part of block flattening is not difficult to get right (one can
get inspiration from allStatements in CompactTreePrinter) but initially nothing
worked, because I had forgotten to “transformInfo” (which amounts to identity
when unnesting a block):

10

trait BlockFlattening extends nsc.SubComponent with nsc.transform.InfoTransform {

/*- InfoTransform IS IMPORTANT */

import global._

import definitions._

import typer.{typed, atOwner} // methods to type trees

override def changesBaseClasses = false

def transformInfo(sym: Symbol, tp: Type): Type = { tp } /*- THIS IS IMPORTANT TOO */

. . .

Flattening is done iteratively (in BlockFlattener.transformUnit, until someReductionApplied
== false), with each iteration performed by BlockFlattener.transform:

override def transform(tree: Tree) = tree match {

case Block(List(), expr) =>

assert (expr != EmptyTree)

someReductionApplied = true;

typed { transform(expr) }

case Block(stats1, b2 @ Block(stats2, expr2)) =>

someReductionApplied = true;

val res0 = treeCopy.Block(tree, transformTrees(stats1 ::: stats2), transform(expr2))

typed { res0 }

case Block(stats, expr) if (stats exists (s => s.isInstanceOf[Block])) =>

someReductionApplied = true;

val (befBlock, blockEtc) = stats span (s => !s.isInstanceOf[Block])

val Block(stats2, expr2) = blockEtc.head

val newStats = befBlock ::: stats2 ::: List(expr2) ::: blockEtc.tail

val res0 = treeCopy.Block(tree, transformTrees(newStats), transform(expr))

typed { res0 }

case _ => super.transform(tree)

}

4.3 Checking of preconditions

We check the preconditions listed in Sec. 4.1 as follows (at the beginning and
end of the snippet below):

11

/* -------- Step (1) Flatten, make tidy, and report well-formedness errors -------- */

// the .scala filename is given by unit.source.file.path

new BlockFlattener transformUnit(unit)

// well-formedness checking and reporting

val glColl = new GotoLabelCollector apply unit.body

glColl.reportErrors()

// replace arg-less LabelDefs not targeted by any goto with their rhs

val labelsToGoAway = glColl.labelsLackingGoto map { lab => lab.symbol }

if(labelsToGoAway.nonEmpty) {

new Label2Rhs(labelsToGoAway) transformUnit(unit)

new BlockFlattener transformUnit(unit)

}

// check no jump straddles a region protected by exception-handling

new ExceptionStraddling traverse unit.body

// check that all Match nodes have switch semantics.

new AllMatchesAreSwitches traverse unit.body

where for example:

class ExceptionStraddling extends Traverser {

override def traverse(tree: Tree) = {

tree match {

case tt: Try =>

checkAllJumpsInternal(tt.block)

for(c <- tt.catches) {

// it’s ok for a jump to leave the CaseDef.guard (I guess)

checkAllJumpsInternal(c.body)

// actually the above also prevents jumps from a CaseDef’s body to that same CaseDef’s guard

}

checkAllJumpsInternal(tt.finalizer)

case _ => ()

}

super.traverse(tree)

}

}

4.4 Classifying LabelDef-Apply pairs

This step allows visualizing what trees will be the focus of transformations later.
To recap, the categories of interest (Sec. 4.1) are:

• do-while and while loops: these LabelDef-Apply pairs are left as-is.

• “sibling” pairs.

• “directly related” pairs, i.e., cases 3(a) and 3(b) in [2].

• “indirectly related”, i.e., cases 3(c) and 3(d) in the paper. Difference
between them: the nearest enclosing statement stmt k is a block in 3(c) as
opposed to an if or switch in 3(d). In terms of the paper’s notation, stmt k

is a composite statement that encloses (directly or indirectly) stmt i and
stmt j.

12

/* ---------------- Step (2) Classify trees of interest ---------------- */

/* (2.1) while and do-while loops */

gL = new GotoLabelCollector(unit.body)

for(lab <- gL.whileLoops) { gL.warningMultiJump(lab) }

for(lab <- gL.doWhileLoops) { gL.warningMultiJump(lab) }

/* (2.2) g-l and l-g siblings */

val siColl = new SiblingsCollector(unit.body)

siColl.reportInfo()

/* (2.3) directly related pairs */

val dirColl = new DirectRelCollector(gL, unit.body)

dirColl.reportInfo()

/* (2.4) indirectly related pairs */

val indiColl = new IndiRelCollector(gL, unit.body)

4.5 Checking postconditions

• Postcondition: For a given Scala program P , any of the categories (loop,
sibling, directly related, indirectly related) may be empty, but every LabelDef-Apply

pair in the AST of P should belong to exactly one of those categories.

The following is the debug version, slow but records details about overlap among
categories:

/* check classification’s postcondition:

* any of the categories above may be empty, but every label-goto pair

* should belong to exactly one of the categories above

*/

for((lab, apps) <- gL.allPairs; app <- apps) {

val cats = Array.fill(10)(false)

cats(0) = gL.whileLoops.contains(lab)

cats(1) = gL.doWhileLoops.contains(lab)

cats(2) = siColl.glSiblings exists { s => (s.lab == lab) && (s.app == app) }

cats(3) = siColl.lgSiblings exists { s => (s.lab == lab) && (s.app == app) }

cats(4) = dirColl.lgDirRelsDiffStmt exists { dr => (dr.lab == lab) && (dr.app == app) }

cats(5) = dirColl.glDirRelsDiffStmt exists { dr => (dr.lab == lab) && (dr.app == app) }

cats(6) = dirColl.directRelsSameStmt exists { p => (p.lab == lab) && (p.app == app) }

cats(7) = indiColl.areInDiffStmts(app, lab)

cats(8) = indiColl.areInDiffIfBranches(app, lab)

cats(9) = indiColl.areInDiffSwitchCases(app, lab)

val catCount: Int = cats.filter(c => c).size

if(catCount != 1) { error("classification postcondition does not hold") }

}

4.6 Gaining details about tree shapes

Many of the label-goto pairs in a Scala AST are not loops. This subsection
and the next show examples of those tree shapes.

13

Figure 3: Sec. 4.6

One way to visualize goto-label pairs involves the debugger’s views. For
example, the pair in Figure 3 differs from a while-loop in that the goto is in the
else branch (of the if expression contained in the LabelDef’s rhs). Additionally,
the other branch does not contain () but Ident(z).

Cases where goto and label are far away can also be visualized, with the
help of -uniqid and nodeToString:

if(catCount != 1) {

error("classification postcondition does not hold for\n\tlab symbol : \n" +lab.symbol+ "\n\tapp symbol : \n" +app.fun.symbol+"\n")

val str = nodeToString(unit.body)

scala.Console.println(str)

}

But for the above to provide useful information one needs to add the following
to NodePrinters.scala:

case lab @ LabelDef(name, params, rhs) =>

println("LabelDef(" + nodeinfo(tree))

println(" \"" + name + "\",")

for (param <- params)

traverse(param, level + 1, true)

traverse(rhs, level + 1, false)

printcln(")")

Now that we are talking about tree shapes, I should mention a difference in
the way gotoelim classifies goto-label pairs as compared to [2].

If we followed to the letter the formulation in that paper, we should ‘unnest’
from a LabelDef with Block as rhs, the stmts and expr there, so that any jump
into the (immediately) ‘containing’ LabelDef is counted as a sibling-pair.

Instead, following the spirit of a LabelDef as a container of sub-expressions,

14

we classify such configuration as a directly-related pair (of the “directRelsSameStmt”
variety). Other examples (with a different shape) of “directly-related pairs of
the directRelsSameStmt variety” are:

foldl#816432($this#816440,start#74452,end#74453,z#74454,op#74455){

if (start.==#5143(end#74453))

z#74454

else

_foldl#816432($this#1220817, start.+#5155(1), end#74453, op.apply#37879(z#74454, $this.apply#29146(start#74452)), op#74455)

}

loop#817037($this#817040,left#83862){

if (left.>#5151(0).&ᄂ($this.hasNext#34120()))

{

$this.next#34121();

_loop#817037($this#1231632, left.-#5157(1))

}

else

$this#1231632

}

In case you want to find more, just place a breakpoint as shown below at
DirectRelCollector.traverse():

4.7 In terms of our running example

The “YouBadPatternMatcher” example from Sec. 2.1 (shown in Listing 1 on p. 18)
contains an indirectly-related pair, which straddles the branches of an if state-
ment, as shown below:

15

5 Adapting the Erosa-Hendren algorithm to Scala

5.1 Transform for sibling pairs

TODO

5.2 Outward movement transform

Applies to:

• those directly related pairs (collected in DirectRelCollector.directRels)
where the goto has a deeper level than the label.

• all “indirectly related” pairs (entirelyDiffStmts, ifBranchStraddling, switchCaseStraddling).

Sub-cases: out of a loop, out of a switch, out of an if/else.

TODO

5.3 Inward movement transform

Applies to those directly related pairs (collected in DirectRelCollector.directRels)
where the label has a deeper level than the goto.

TODO

5.4 Putting it all together

Algorithm in Sec. 2.5 of [2].

TODO

16

6 Related Work

6.1 Decompiling Scala into Java

There have been attempts at decompiling classfiles emitted by scalac, into
Java 1.4. For most Scala programs, no decompiler can in general recover
compile-again, semantics-preserving Java sources. GOTO elimination should
improve that situation. Additionally, one can give the decompiler an easier
time with -Ystruct-dispatch:no-cache -no-specialization. Before gotoelim,
the only option to have “less GOTOs” was -Yno-squeeze -Ypmat-naive.

• James Hamilton, Sebastian Danici.
An Empirical Evaluation of Java Bytecode Decompiler Effectiveness4

• Dava decompiler5

6.2 Translating Scala ASTs into JavaScript

• ScalaGWT

– http://code.google.com/p/scalagwt

– http://twitter.com/scalagwt

• S2JS (Scala to Closure-annotated Javascript),
http://groups.google.com/group/s2js

7 Future Work

7.1 A new backend for the Scala.Net compiler to emit C#
sources

• http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q1/CSharpGen.pdf

The conversion put forward above is related but different from another one
(obtaining 3-address code from ICode) also described at The Scala Compiler
Corner (for an early C#-emitting prototype). In the meantime, it became
clear that GenCSharp can replace the GenICode→ GenMSIL compilation pipepline,
which has the advantage that the required transformations, once developed, can
be reused across a larger number of plugins (including but not limited to those
consuming ICode.)

References

[1] Iulian Dragos. Compiling Scala for Performance. PhD thesis, Lausanne,
2010. http://lamp.epfl.ch/~dragos/files/dragos-thesis.pdf.

[2] Ana M. Erosa and Laurie J. Hendren. Taming Control Flow: A Structured
Approach to Eliminating GOTO Statements. In ICCL, 1994.

4http://jameshamilton.eu/sites/default/files/JavaBytecodeDecompilerSurveyExtended.

pdf
5http://www.sable.mcgill.ca/dava/

17

http://code.google.com/p/scalagwt
http://twitter.com/scalagwt
http://groups.google.com/group/s2js
http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q1/CSharpGen.pdf
http://lamp.epfl.ch/~dragos/files/dragos-thesis.pdf
http://jameshamilton.eu/sites/default/files/JavaBytecodeDecompilerSurveyExtended.pdf
http://jameshamilton.eu/sites/default/files/JavaBytecodeDecompilerSurveyExtended.pdf
http://www.sable.mcgill.ca/dava/

Listing 1: Sec. 2.1

[[syntax trees at end of cleanup]]// Scala source: bt4.scala

package <empty>#3 {

class YouBadPatternMatcher#9362 extends java.lang.Object#2344 with ScalaObject#430 {

def problematicPattern#9367(): java.lang.Object#2344 = {

var exceptionResult1#31723: java.lang.Object#2344 = _;

try {

exceptionResult1#31723 = scala.Int.box#4385(0)

} catch {

case (ex$1#11810 @ _) => {

exceptionResult1#31723 = {

{

/*- start of block B */

<synthetic> val temp1#20068: java.lang.Throwable#2266 = ex$1#11810;

if (temp1.$isInstanceOf#9003[java.lang.Exception#2716]())

{

/*- start of block B.T */

<synthetic> val temp2#20069: java.lang.Exception#2716 = temp1.$asInstanceOf#9005[java.lang.Exception#2716]();

val x#11234: java.lang.Exception#2716 = temp2#20069;

if (YouBadPatternMatcher#9362.this.gd1$1#11822(x#11234))

{

/*- start of block B.T.T */

{

scala#21.this.Predef.println#9157("first case ".+#5852(temp2#20069));

scala.runtime.BoxedUnit.UNIT#31704

}

}

else

{

/*- start of block B.T.F */

val x#11336: java.lang.Throwable#2266 = temp2#20069;

body%1#23436(x#11336) { /*- this is a LabelDef tree node, the target of a jump. */

scala#21.this.Predef.println#9157("second case ".+#5852(x#11336));

scala.runtime.BoxedUnit.UNIT#31704

}

}

}

else

{

/*- start of block B.F */

body%1#23436(temp1#20068); /*- this is an Apply node,

denoting a jump from an instruction in block B.F into an instruction inside B.T.F */

scala.runtime.BoxedUnit.UNIT#31704

}

/*- end of block B */

}

}

}

};

exceptionResult1#31723

};

final <synthetic> private[this] def gd1$1#11822(x$1#11823: java.lang.Exception#2716): Boolean#3772 =

x$1.getMessage#11299().==#5841("test");

def this#9366(): YouBadPatternMatcher#9362 = {

YouBadPatternMatcher#9362.super.this#5823();

()

}

}

}

18

Listing 2: Sec. 3.3

case Match(selector, cases) =>

if (settings.debug.value)

log("Generating SWITCH statement.");

var ctx1 = genLoad(selector, ctx, INT)

val afterCtx = ctx1.newBlock

var caseCtx: Context = null

generatedType = toTypeKind(tree.tpe)

var targets: List[BasicBlock] = Nil

var tags: List[Int] = Nil

var default: BasicBlock = afterCtx.bb

for (caze @ CaseDef(pat, guard, body) <- cases) {

assert(guard == EmptyTree)

val tmpCtx = ctx1.newBlock

pat match {

case Literal(value) =>

tags = value.intValue :: tags

targets = tmpCtx.bb :: targets

case Ident(nme.WILDCARD) =>

default = tmpCtx.bb

case _ =>

abort("Invalid case statement in switch-like pattern match: " +

tree + " at: " + (tree.pos))

}

caseCtx = genLoad(body, tmpCtx, generatedType)

caseCtx.bb.closeWith(JUMP(afterCtx.bb) setPos caze.pos)

}

ctx1.bb.emitOnly(

SWITCH(tags.reverse map (x => List(x)), (default :: targets).reverse) setPos tree.pos

)

afterCtx

19

Listing 3: Sec. 2.2

--

original

--

if (evalB) {

if (evalBT) {

BTT

} else {

BTF

}

} else {

goto lBTF

}

--

step 1: goto out of if

--

var takeLBTF = false /* added */

if (evalB) {

if (evalBT) {

BTT

} else {

takeLBTF = false /* added */

BTF

}

} else {

takeLBTF = true /* replaced */

}

gotoif(takeLBTF, lBTF) /* added */

--

step 2: goto lifting (because goto appears after target)

--

var takeLBTF = false

do { /* added */

gotoif(takeLBFT, lBTF) /* added */

if (evalB) {

if (evalBT) {

BTT

} else {

takeLBTF = false

BTF

}

} else {

takeLBTF = true

}

} while (takeLBFT) /* changed */

20

Listing 4: Sec. 2.2

--

step 3: inward movement (goto into if, then branch)

--

var takeLBTF = false

do {

/* gotoif deleted */

if (takeLBFT || evalB) { /* pre-prended OR-rand */

gotoif(takeLBFT, lBTF) /* added */

if (evalBT) {

BTT

} else {

takeLBTF = false

BTF

}

} else {

takeLBTF = true

}

} while (takeLBFT)

--

step 4: inward movement (goto into if, else branch)

--

var takeLBTF = false

do {

if (takeLBFT || evalB) {

/* gotoif deleted */

if ((!takeLBFT) && evalBT) { /* pre-prended negated AND-rand */

BTT

} else {

gotoif(takeLBFT, lBTF) /* added */

takeLBTF = false

BTF

}

} else {

takeLBTF = true

}

} while (takeLBFT)

--

step 5: goto elim

--

var takeLBTF = false

do {

if (takeLBFT || evalB) {

if ((!takeLBFT) && evalBT) {

BTT

} else {

/* gotoif deleted */

takeLBTF = false

BTF

}

} else {

takeLBTF = true

}

} while (takeLBFT)

21

	How to build and run
	Background
	Problem statement
	Running example after GOTO elimination
	Theory on GOTO statement elimination
	Sidenote: breaking with the habit of C's break and continue
	What about backends for languages with ``structured-GOTO''

	AST shapes of interest
	Non-problematic LabelDef-Apply shapes
	How GenICode translates LabelDefs and jumps
	Those Match nodes surviving TransMatch have switch semantics
	try-catch-finally

	Before GOTO elimination
	LabelDef-Apply in Scala vs. goto-label in C
	Block flattening
	Checking of preconditions
	Classifying LabelDef-Apply pairs
	Checking postconditions
	Gaining details about tree shapes
	In terms of our running example

	Adapting the Erosa-Hendren algorithm to Scala
	Transform for sibling pairs
	Outward movement transform
	Inward movement transform
	Putting it all together

	Related Work
	Decompiling Scala into Java
	Translating Scala ASTs into JavaScript

	Future Work
	A new backend for the Scala.Net compiler to emit C# sources

