
The jdk2ikvm source-to-source converter

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

December 14th, 2010

Abstract

Our previous prototype (in the form of a patched compiler) applied the
JDK to IKVM conversion on the fly, emitting .NET assemblies as output.
That division of labor turned out to be inflexible (Sec. 8.2).

Thus we factor out the JDK-to-IKVM functionality into a compiler
plugin (jdk2ikvm) that outputs Scala.NET source files, given JDK-based
counterparts as input. The Scala.NET compiler compiles them as usual
(IKVM-dependencies are now explicit in source code, and the IKVM li-
brary can be linked as any other). After removing the special-casing for
IKVM, the original architecture of scalac is gained back, sharing again
most of the codebase between the JVM and .NET backends. As before,
scalac can also run as a cross-compiler.

We field-test scalac and jdk2ikvm for bootstrapping, which comprises:

• output Scala.NET sources from unmodified JDK-based trunk sources

• let the cross-compiler produce scalacompiler.exe from them

• from then on, use scalacompiler.exe (not the cross-compiler) to
compile the output of jdk2ikvm

converted

scalalib

sources

IKVM

converted

compiler

sources

scalalib

sources

JDK

compiler

sources

jdk2ikvm

Nota bene: we refer to jdk2ikvm as a source-to-source converter to empha-
size its input-output behavior, however it does not limit itself to surface
syntax, operating instead on typed ASTs that are later pretty-printed.

Nota bene 2 : In more detail, given ASTs typed in forJVM mode, the
plugin trades some subtrees for untyped parse trees. Once pretty-printed,
they are compiled (and thus typecheckd) in forMSIL mode. jdk2ikvm

does not re-type after transform (it can’t retype its own output: the
IKVM library is a .dll, not a .jar).

Sec. 1.3 covers possibilities opened up by jdk2ikvm as blueprint for
other language-aware pre-processors for Scala, and in connection with
Scalify, a prototype Java → Scala converter.

An accompanying document, Learning and doing scalac transforma-
tions the easy way: via unparsing1, describes unparsing in more detail.

1http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/Unparsing.

pdf

1

http://lamp.epfl.ch/~magarcia
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/Unparsing.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/Unparsing.pdf

Contents

1 Intro 3
1.1 How to build jdk2ikvm . 3
1.2 How to run . 4
1.3 Possibilities opened up by jdk2ikvm 4

2 Under the hood 4
2.1 Transforming trees without destructive updates 5

3 Big picture of the conversion recipe 6

4 Transforms for the String and Object contracts 6

5 Magic for interfaces 7
5.1 Extra interfaces . 7

5.1.1 Examples: anonymous class 7
5.2 Implied interfaces . 8
5.3 Upcast to extra interface . 8

5.3.1 String comparison semantics 8
5.3.2 Rewrite standalone type refs 9

5.4 Ghost interfaces . 9
5.4.1 Standalone type references to Cloneable and CharSequence 9
5.4.2 Static accesses . 10
5.4.3 Instance method invocations 10
5.4.4 == and != . 11
5.4.5 Type casts and checks . 11

6 Exceptions 12
6.1 Case (1) Originally catch Throwable 12
6.2 Case (2) Originally catch Exception or catch Error 13
6.3 Case (3) Otherwise . 13

7 Etc 13

8 Appendix 13
8.1 Using another pretty-printer . 13
8.2 Lessons learnt from the previous prototype 14

2

1 Intro

We reuse file utilities adapted from Mark Harra’s Scala X-Ray, http://www.
scala-lang.org/node/1509, to interact with the compiler and to output a tree
of source files whose structure mirrors that of the input.

And of course we build upon scalac’s extensible support for tree traversing,
transformation, and building.

At a high level, the jdk2ikvm transformation is quite concise:

def generateOutput()

{

for(unit <- currentRun.units)

{

BlockFlattener.flattenBlocks(unit)

val noOfChanges = if(justUnparse) 0

else rewriteTrees(unit)

val sourceFile = unit.source.file.file

val relativeSourcePath = getRelativeSourcePath(sourceFile)

val outputFile = new File(outputDirectory.get, relativeSourcePath)

outputFile.getParentFile.mkdirs()

if (justUnparse || (noOfChanges > 0)) {

val refactoredTile = UnparseTreeFolder.xform(unit.body)

unparse.TilePrinter.writeTo(refactoredTile, outputFile)

} else {

val f: java.io.File = unit.source.file.file

FileUtil.write(new java.io.FileInputStream(f), outputFile)

}

}

}

As can be seen, all transformations are applied locally to subtrees within the
current compilation unit, yet require in general knowledge about types in all
compilation units processed in the compiler run (thus, we run after refchecks).
No re-typing is performed after transformation, just pretty-printing.

1.1 How to build jdk2ikvm

To build jdk2ikvm from sources:

1. compile all Scala source files from http://lampsvn.epfl.ch/trac/scala/

browser/scala-experimental/trunk/jdk2ikvm

2. say the resulting classfiles are found at myplugins\jdk2ikvm\classes

3. prepare the jdk2ikvm.jar

del jdk2ikvm.jar

jar -cf jdk2ikvm.jar -C myplugins\jdk2ikvm\classes scala -C myplugins\jdk2ikvm\resources\ .

4. where myplugins\jdk2ikvm\resources contains the plugin manifest scalac-plugin.xml

<plugin>

<name>jdk2ikvm</name>

3

http://www.scala-lang.org/node/1509
http://www.scala-lang.org/node/1509
http://lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/jdk2ikvm
http://lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/jdk2ikvm

<classname>scala.tools.jdk2ikvm.JDK2IKVMPlugin</classname>

</plugin>

5. that’s it.

1.2 How to run

Regarding command-line options, the following are needed:

-Ystop:superaccessors /*- given that the plugin runs right after typer */

-sourcepath bla\bla\src

-P:jdk2ikvm:output-directory:bla\bla\out

-Xplugin where\to\find\jdk2ikvm.jar

1.3 Possibilities opened up by jdk2ikvm

jdk2ikvm opens up intriguing possibilities in connection with Scalify, a tool
to automatically translate from Java to Scala:

• http://wiki.jvmlangsummit.com/Scalify

• http://video.google.com/videoplay?docid=-3493190786110154189#

Additionally, jdk2ikvm can also serve as blueprint for other language-aware
pre-processors (as opposed to typing-oblivious pre-processors limited to macro
expansions and the like). As a more encompassing example, the mythical
Scala.NET → C# converter also fits in this category: http://lamp.epfl.ch/

~magarcia/ScalaCompilerCornerReloaded/2010Q2/threeaddress.pdf

2 Under the hood

At its core, jdk2ikvm applies a pipeline of AST transformers just like the foldLeft

example below shows for a few transformers (strObjTransformer, addMissingObjectContract
etc.):

def rewriteTrees(unit: CompilationUnit) = {

if (!unit.isJava) {

val pipeline = List(strObjTransformer, addMissingObjectContract,

magicIfaceTransformer, exceptionsTransformer, veryLastTransformer)

ChangedTreePipeliner.clear(pipeline)

val op = (t: Tree, f: Transformer) => f.transform(t)

unit.body = pipeline.foldLeft(unit.body)(op)

ChangedTreePipeliner.noOfChanged(pipeline)

} else 0

}

where a Transformer.transform does not perform an in-place destructive update
but returns instead tree only whose changed nodes are new. An excursion about
this appears in Sec. 2.1.

Before diving into IKVM-specific transforms, you might want to take a look
at a more gentle introduction to AST rewriting:

4

http://wiki.jvmlangsummit.com/Scalify
http://video.google.com/videoplay?docid=-3493190786110154189#
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q2/threeaddress.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q2/threeaddress.pdf

Figure 1: One way to compose transformers

• “Constant Folding Redux”, http://www.sts.tu-harburg.de/people/mi.
garcia/ScalaCompilerCorner/ReduxReport.pdf

Coming back to jdk2ikvm, each element in the pipeline is realized by its own
trait to simplify development, although they all need be applied if the output
sources are to abide by IKVM usage rules.

The foldLeft above showed one way to apply transformers in sequence, while
Figure 1 shows another way (a single transformer may compose others). The
snippet collapses the source code of a transformer that rewrites some callsites
(StrObjCallsites) and another that adds co-overrides. When rewriteTrees in-
vokes strObjTransformer.transform(Tree), both of them are invoked.

2.1 Transforming trees without destructive updates

Although not framed in the context of scalac ASTs, the following (visual!)
depiction conveys the idea quite effectively (Figure 2):

In recent discussions on the scala-internals and scala-xml mailing
lists, there were calls for a mutable, DOM-like XML model, where
nodes hold references to their parent element, so that all standard

5

http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/ReduxReport.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/ReduxReport.pdf

Figure 2: A Zipper for scala.xml, reproduced from http://szeiger.de/blog/

2009/12/27/a-zipper-for-scala-xml/

XPath axes can be supported. In this post Id like to present a dif-
ferent representation which is based on the immutable and persistent
scala.xml model, is completely immutable itself, yet allows navigation
along all axes and “mutation”. It is based on the Zipper technique
which was first described by Gérard Huet

http: // szeiger. de/ blog/ 2009/ 12/ 27/ a-zipper-for-scala-xml/

3 Big picture of the conversion recipe

A summary description of each set of transformations will be added as this doc-
ument progresses, in the meantime the most complete description can be found
in previous write-ups at The Scala Compiler Corner (Reloaded), in particular:

• “Mental adjustments demanded by IKVM’s Object Model Mapping” (Octo-
ber 2010), http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/
2010Q4/ikvmify2.pdf

• “Transforming JDK-based Scala sources to use IKVM instead” (Septem-
ber 2010), http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/
2010Q3/ikvmcMining.pdf

4 Transforms for the String and Object contracts

These transformations comprise:

• callsites that originally targeted instance methods are rewritten to target
static helpers instead (“instancehelpers”)

• instantiations (but not super constructor invocations) are rewritten to
invoke “newhelpers”

• co-overrides are added for the following non-sealed methods in j.l.Object:

6

http://szeiger.de/blog/2009/12/27/a-zipper-for-scala-xml/
http://szeiger.de/blog/2009/12/27/a-zipper-for-scala-xml/
http://szeiger.de/blog/2009/12/27/a-zipper-for-scala-xml/
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/ikvmify2.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/ikvmify2.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q3/ikvmcMining.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q3/ikvmcMining.pdf

val t = msym.name match {

case nme.hashCode_ => callerForSibling(dd, "GetHashCode")

case nme.toString_ => callerForSibling(dd, "ToString")

case nme.equals_ => callerForSibling(dd, "Equals")

case nme.finalize_ => callerForSibling(dd, "Finalize")

}

• type references to j.l.{String, Object} are rewritten to scala.{String,
Object}.

– in particular, in extends clauses, j.l.Object type references are rewrit-
ten to System.Object

– the following occurrence of java.lang.String as RHS in a type alias
in Predef.scala:

type String = java.lang.String

should be rewritten as:

type String = System.String

TODO: AddMissingJLObjOverrides

TODO: remember that super.hashCode had to be rewritten?

5 Magic for interfaces

The transformations around interfaces are grouped into “extra interfaces” (Sec. 5.1),
“implied interfaces” (Sec. 5.2), and “upcast to extra” (Sec. 5.3).

5.1 Extra interfaces

There’s only one pair (JDK interface, extra .NET interface) to transform:

• java.lang.Comparable

• System.IComparable

A template that explicitly lists j.l.Comparable in its extends clause will get a
DefDef added to its body:

override def CompareTo(that: Object) = this.compareTo(that)

and that’s it (no interface needs to be added, because the extra interface is
already inherited).

5.1.1 Examples: anonymous class

val myComparable = new Comparable[String] {

def compareTo(that: String) = 1

}

7

val myComparable: java.lang.Object with java.lang.Comparable[String] = {

new $anon

class $anon extends System.Object with java.lang.Comparable[String] {

override def CompareTo(that: String) = this.compareTo(that)

def compareTo(that: scala.String): Int = 1

}

}

5.2 Implied interfaces

A template that explicitly lists in its extends clause one of the interfaces:

• j.l.Iterable

• j.l.Closeable

gets another interface added to that list, resp.:

• System.Collections.IEnumerable

• System.IDisposable

as well as a DefDef added to its body (as shown below) delegating to the
developer-provided override, as shown below.

In the case of j.l.Iterable, that override is called not directly but from an
IKVM-provided helper:

override def GetEnumerator = { new ikvm.lang.IterableEnumerator(this) }

override def Dispose = { this.close }

5.3 Upcast to extra interface

Two transformations are performed here:

5.3.1 String comparison semantics

receiver.compareTo(that)

-->

java.lang.Comparable.__Helper.compareTo(receiver, that)

When given a System.IComparable object x, x could be in particular a System.String

posing for a java.lang.String, and therefore2:

Java’s String.compareTo is specified more strictly than Comparable.compareTo.
The interface method simply returns zero, positive, or negative inte-
ger, but the String version [should] return the difference between the
mismatching characters (or zero, if the strings match.) To handle
this correctly, when you call Comparable.compareTo, you’re actually

2http://weblog.ikvm.net/PermaLink.aspx?guid=db9ee4f9-3b84-40a3-ac53-acb5e27ddf19

8

http://weblog.ikvm.net/PermaLink.aspx?guid=db9ee4f9-3b84-40a3-ac53-acb5e27ddf19

calling a static method Comparable.__Helper.compareTo that first does a
check to see if the object you’re comparing is a String and, if so, it
calls a static helper method that implements the specified Java com-
parison algorithm.

5.3.2 Rewrite standalone type refs

java.lang.Comparable

-->

System.IComparable

For interoperability, System.IComparable (i.e., the extra interface) should be
favored (in explicit type references) over java.lang.Comparable (i.e., the JDK
interface that carries the extra baggage). That way, existing .NET binaries
unaware about IKVM can interoperate, ignoring the more specific interface.

5.4 Ghost interfaces

Summary of IKVM’s nested helper types:

• IKVM types with a __Helper class: java.lang.Comparable

• IKVM types with a __Interface interface: java.io.Serializable, java.lang.Cloneable,
java.lang.CharSequence

A ghost interface is a JDK interface for which no same-name interface but
a struct exists in IKVM. The term refers to: j.l.CharSequence, j.l.Cloneable,
and java.io.Serializable.

The transformations for java.io.Serializable are different from those for
the other ghost interfaces, thus this section focuses only on j.l.CharSequence

and j.l.Cloneable.

5.4.1 Standalone type references to Cloneable and CharSequence

In general, standalone type references to Cloneable and CharSequence remain as-
is (and thus denote a struct type after translation) but in the following contexts
a certain rewriting applies:

• implementing a ghost interface, rewrite as follows:

– extends Cloneable

→ extends java.lang.Cloneable.__Interface

– extends CharSequence

→ extends java.lang.CharSequence.__Interface

In this latter case, remember to implement toString() if not already
overridden. Not necessary on JDK (as it is inherited from j.l.Object)
but after translation System.Object will not provide an implementa-
tion. IKVM includes toString() among the methods to implement
in java.lang.CharSequence.__Interface

• instantiating an anonymous class, rewrite as follows:

9

– new Cloneable { ...}
→ new java.lang.Cloneable. Interface { ...}

– new CharSequence { ...}
→ new java.lang.CharSequence. Interface { ...}

• TODO Adding toString is done by the transforms for the String and Object

contracts. Anyway, what should be done is: (a) YES, there’s an override. In
this case, add ToString that callSibling; (b) NO, there’s no override: add
just toString() whose body invokes the instancehelper toString(this)

The transformations above are achieved by:

case tpl @ Template(parents, self, body) if parents.exists(p => p.symbol == jlCharSequenceClass) =>

val newParents = transformTrees(parents)

val newSelf = transformValDef(self)

val newStats = transformStats(tpl.body, tpl.symbol)

val newParents2 = newParents map {

case p if (p.symbol == jlCharSequenceClass) => jlCharSequenceSelector

case p => p

}

treeCopy.Template(tpl, newParents2, newSelf, newStats)

5.4.2 Static accesses

Ghost types correspond to JDK interfaces with no static fields (FYI: the IKVM
version of j.l.CharSequence, a valuetype, does have static methods for example
the == operator overload mentioned below).

5.4.3 Instance method invocations

The JDK versions of Serializable and Cloneable define no methods of their
own, so the issue of how to map calls to them does not arise. On the other
hand, CharSequence has instance methods of its own, but textual occurrences
of invocations can remain as-is, due to the views below (with them, before-
translation invocations on CharSequence instance methods will find at runtime
a conformant receiver).

// Scala.NET code to be compiled against IKVM

implicit def refToStructCharSequence

(i: java.lang.CharSequence.__Interface): java.lang.CharSequence = {

val c : java.lang.CharSequence = new java.lang.CharSequence() // default init

c.__<ref> = i

c

}

implicit def sstringToStructCharSequence

(s: System.String): java.lang.CharSequence = {

val c : java.lang.CharSequence = new java.lang.CharSequence() // default init

c.__<ref> = s

c

}

// Scala.NET code to be compiled against IKVM

10

implicit def refToStructCloneable

(i: java.lang.Cloneable.__Interface): java.lang.Cloneable = {

val c : java.lang.Cloneable = new java.lang.Cloneable() // default init

c.__<ref> = i

c

}

5.4.4 == and !=

Please notice that == and != between two CharSequences should bind to the
following methods. This is taken care of by TypeParser.

// C# code showing part of IKVM’s java.lang.CharSequence API

public static bool operator ==(CharSequence sequence1, CharSequence sequence2)

{ return (sequence1.__<ref> == sequence2.__<ref>); }

public static bool operator !=(CharSequence sequence1, CharSequence sequence2)

{ return (sequence1.__<ref> != sequence2.__<ref>); }

5.4.5 Type casts and checks

We’re talking about: isInstanceOf[C], asInstanceOf[C], classOf[C]
The cases to consider when translating “arg.isInstanceOf[C]” and “arg.asInstanceOf[C]”

for ghosts are:

1. C is ghost:
arg.isInstanceOf[java.lang.CharSequence]

→ java.lang.CharSequence.IsInstanceOf(arg)

arg.isInstanceOf[java.lang.Cloneable]

→ java.lang.Cloneable.IsInstanceOf(arg)

similarly for asInstanceOf.

2. C is array of ghost. Call the static IsInstanceArray(arg, rank) on the
ghost’s type.

TODO: what about asInstanceOf[array of ghost]

TODO In contrast, classOf[] should be left as-is (??)

The transformations above are achieved by:

// rewrites isInstanceOf[CharSequence] and isInstanceOf[Cloneable]

case app @ TypeApply(fun, args) if (

{

val guard0 = (fun.symbol.overriddenSymbol(AnyClass) == Any_isInstanceOf)

if (guard0 && (args.head.tpe != null)) {

val typeArg = args.head.tpe.typeSymbol

ghostClasses contains typeArg

} else false

}

) =>

val typeArg = args.head.tpe.typeSymbol

11

if (typeArg == jlCharSequenceClass)

instanceOfGhost(jlCharSequenceSelector, app)

else

instanceOfGhost(jlCloneableSelector, app)

6 Exceptions

Before looking at the rewriting rules, let’s review the context where those rules
apply:

• All of j.l.Throwable, j.l.Exception, and j.l.Error “get mapped to”
System.Exception (because there’s a correspondence between j.l.Throwable

and S.Exception methods, and because neither j.l.Exception nor j.l.Error
add methods of their own).

• IKVM’s j.l.Throwable is derived from System.Exception and thus does
not conform to j.l.Object.

The detailed recipe appears in Secs. 6.1 to 6.3, the high-level view is:

• After translation, each catch clause declares an argument of (a subclass of)
System.Exception. Depending on the before-translation type, the rewrit-
ten type will be:

– System.Exception for j.l.Throwable, j.l.Exception, and j.l.Error,
i.e., for Cases (1) and (2) below.

– the same-name IKVM counterpart for all others, Case (3).

• In Case (1), catch Throwable, the “original catch block” may contain in-
vocations to Throwable methods to be called through a System.Exception

reference. ikvmc detours those invocations to instancehelpers in Throwable

that check if the passed object subclasses Throwable and:

– if so, (a) callvirt the method in question,

– if not, calls either (b.1) the closest System.Exception equivalent; or
(b.2) a static helper in IKVM’s java.lang.Throwable.

• In Case (2), catch Exception or catch Error, a utility call is pre-pended to
the output catch-body, to try to wrap the exception so that the wrapper
conforms to the originally declared one (or rethrow it otherwise).

• In Case (3), the exception to catch is a proper subtype of Exception or
Error. The rewriting is simpler because there’s an IKVM counterpart for
that type.

6.1 Case (1) Originally catch Throwable

The output catch clause looks as follows:

12

case exceptionArg : System.Exception =>

val exception = java.lang.Throwable.__<map>(exceptionArg, true).asInstanceOf[System.Exception]

... original catch block ...

/*- in this block there are before-translation invocations

on j.l.Throwable methods that after-translation will go through

a System.Exception receiver. */

6.2 Case (2) Originally catch Exception or catch Error

The output catch clause looks as follows:

case exceptionArg : <OriginalType> =>

val exception = java.lang.Throwable.__<map>(exceptionArg,

typeof(<ExceptionOrError>),

true).asInstanceOf[<OriginalType>]

if (exception eq null) { throw exceptionArg }

... original catch block ...

6.3 Case (3) Otherwise

“Otherwise” means of course: originally a subclass of Exception or Error is
caught.

case exception : <OriginalType> => // Bind remains unmodified

java.lang.Throwable.__<map>(exception, true)

... original catch block ...

7 Etc

• diff the IKVM-ready source files with the original sources.

8 Appendix

8.1 Using another pretty-printer

Pretty-printing as implemented in jdk2ikvm does not keep the original layout
(we use the term unparsing to make clear this behavior). In oder to preserve lay-
out another pretty-printer should be integrated, as provided by Mirko Stocker’s

13

refactoring library, http://scala-refactoring.org/. In this case the result-
ing plugin will depend on refactoring.jar, a fact that has to be taken care of
when running scalac: -classpath indicates where to look for classfiles needed by
scalac to compile the input files, not the classfiles needed by some plugin. So-
lution alternatives are discussed at http://www.scala-lang.org/node/6664.
To those alternative, I’ll add yet another:

-Xbootclasspath/a:...;...;Z:\scalaproj\sn4\myplugins\scala-refactoring-lib.jar

Another straightforward way to make sure the plugin can access the refactoring
classfiles is to make them part of the plugin itself.

TODO: -Yrangepos also validates trees, which fails on scala.* definitions (as in
the bootstrapping case . . .). Details at http://www.scala-lang.org/node/

2755
The command-line option -Yrangepos makes sure that scalac instantiates an

nsc.interactive.Global:

val compiler = if (command.settings.Yrangepos.value) new interactive.Global(command.settings, reporter)

else new Global(command.settings, reporter)

The refactoring library sometimes requires the following functionality from
nsc.interactive.Global:

def compilationUnitOfFile(f: AbstractFile): Option[global.CompilationUnit]

scalac uses the interactive compiler when invoked with -Yrangepos, otherwise an
nsc.Global will be handed to compiler plugins such as jdk2ikvm. The scala-refactoring

library supports both usage scenarios, by encapsulating in trait CompilerAccess

the above dependency:

trait CompilerAccess {

val global: tools.nsc.Global

def compilationUnitOfFile(f: AbstractFile): Option[global.CompilationUnit]

}

8.2 Lessons learnt from the previous prototype

Our previous prototype (in the form of a patched compiler) applied the JDK to
IKVM conversion on the fly, emitting .NET assemblies as output. That division
of labor turned out to be inflexible because:

14

http://scala-refactoring.org/
http://www.scala-lang.org/node/6664
http://www.scala-lang.org/node/2755
http://www.scala-lang.org/node/2755

1. It forced the developer to prepare programs with JDK-like syntax when
targeting .NET, moreover forcing to keep a mental model of the mappings
that the patched compiler performed.

• For example, whenever a catch block expected a java.lang.NullPointerException,
it could happen that a System.NullReferenceException was thrown
by external code being invoked. Question: do you know, from look-
ing at your source files, if the patched compiler emitted code to also
catch NullReferenceException?

2. As a .NET compiler, it required programs always to be linked against
IKVM’s library (which is not the usual case unless migrating platforms).
The IKVM library in turn was necessary when implementing all of the
JDK-to-IKVM conversion recipe, without which bootstrapping can’t hap-
pen.

3. Running in forMSIL mode, it accepted programs that would have been
rejected in both (a) forJVM mode and (b) “forMSIL minus patches” mode
(precisely the “mode” in which .NET compilers run).

• For example, any program that mixes API calls from JDK and .NET
would be valid as per the patched compiler (which runs in forMSIL

mode),

• in particular programs calling the overrides added automatically to
support extra interfaces (remember, the patched compiler imple-
ments the full JDK to IKVM conversion recipe). After offloading to
jdk2ikvm the conversion task, the Scala.NET compiler does not add
any overrides on its own, and program sources tell again all there is
to know about the emitted program.

4. Intermingling the functionality of the JVM, .NET, and IKVM backends
all in one codebase increased complexity big time.

5. Last but not least, the jdk2ikvm tool is useful on its own.

15

	Intro
	How to build jdk2ikvm
	How to run
	Possibilities opened up by jdk2ikvm

	Under the hood
	Transforming trees without destructive updates

	Big picture of the conversion recipe
	Transforms for the String and Object contracts
	Magic for interfaces
	Extra interfaces
	Examples: anonymous class

	Implied interfaces
	Upcast to extra interface
	String comparison semantics
	Rewrite standalone type refs

	Ghost interfaces
	Standalone type references to Cloneable and CharSequence
	Static accesses
	Instance method invocations
	== and !=
	Type casts and checks

	Exceptions
	Case (1) Originally catch Throwable
	Case (2) Originally catch Exception or catch Error
	Case (3) Otherwise

	Etc
	Appendix
	Using another pretty-printer
	Lessons learnt from the previous prototype

