
Learning and doing scalac transformations

the easy way: via unparsing

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

December 16th, 2010

Abstract

The Scala compiler supports a plugin architecture that allows third-parties
to perform custom program transformations, much like the compiler it-
self transforms ASTs. In particular, it’s possible to have a plugin whose
output are .scala source files (for example, that’s what the jdk2ikvm

converter does). These plugins rely on an unparsing component, to ob-
tain a more detailed yet easily navigable view of the structure of ASTs.
More detailed because some code expansions are made explicit (expan-
sions that help explain performance, e.g., invocations of extra methods of
structural types). And easily navigable because the resulting sources can
be explored with a Scala IDE (and compiled again, if so wished, although
there’s no difference as compared to compiling the original sources: we’re
always talking about so called roundtripping unparsing).

These notes describe the scala.tools.unparse component, giving ex-
amples of usage scenarios for this versatile tool, including AST-aware
pre-processors for Scala (for example, API migration tools, style check-
ing tools, etc.) Compared to compiler plugins that directly deliver ASTs
to the next compilation phase, a pre-processor has both pros and cons:
compilation rounds are slower (because input programs are typed twice:
before and after pre-processing). On the plus side, the ASTs prepared by
a pre-processor:

• need not contain type symbols, which will be added by the compiler
on its second run; and

• are not constrained to the Scala subset that subsequent phases un-
derstand (e.g., ASTs delivered to phases after explicitouter should
not contain match expressions).

The above suggests that pre-processors can serve as proofs-of-concept,
later evolving to compiler plugins in case demand justifies their develop-
ment.

The unparse sources can be found at http://lampsvn.epfl.ch/trac/
scala/browser/scala-experimental/trunk/jdk2ikvm/src/scala/tools/

unparse/

1

http://lamp.epfl.ch/~magarcia
http://lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/jdk2ikvm/src/scala/tools/unparse/
http://lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/jdk2ikvm/src/scala/tools/unparse/
http://lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/jdk2ikvm/src/scala/tools/unparse/

Contents

1 Getting Started 3
1.1 How to build . 3
1.2 How to run . 3
1.3 Testing unparsing by roundtripping 3
1.4 Undoing synthetic artefacts added to ASTs till typer 4

2 When unparsed output looks different from your input . . . it’s
on purpose 4
2.1 Inlined XML . 4
2.2 Long form for existential types 4

3 Under the hood 5
3.1 Tiling of Text Blocks . 5
3.2 Visiting (yes, visiting) Scala ASTs 6
3.3 Unparsing the copy methods of case classes 7

4 Unparsing recipe 7
4.1 Recovering class definition syntax 9

4.1.1 Params to the class’ main constructor and arguments to
the superclass’ constructor (supercall arguments) 9

4.1.2 Shortcut to fabricate supercallArgs 11
4.1.3 Early Defs . 11

4.2 Recovering loops . 12
4.3 Recovering patterns in Match expressions 12
4.4 Unparsing lambdas . 12

5 Beyond plain unparsing: pre-processing (resolved, typed) ASTs 13

6 TODO: Unparsing after explicitouter and erasure 14

7 FYI: Scala subset reaching each phase 15

2

1 Getting Started

1.1 How to build

Same instructions as for building jdk2ikvm:

1. compile all Scala source files from http://lampsvn.epfl.ch/trac/scala/

browser/scala-experimental/trunk/jdk2ikvm

2. say the resulting classfiles are found at myplugins\jdk2ikvm\classes

3. prepare the jdk2ikvm.jar as follows

del jdk2ikvm.jar

jar -cf jdk2ikvm.jar -C myplugins\jdk2ikvm\classes scala -C myplugins\jdk2ikvm\resources\ .

4. where myplugins\jdk2ikvm\resources contains the plugin manifest scalac-plugin.xml

<plugin>

<name>jdk2ikvm</name>

<classname>scala.tools.jdk2ikvm.JDK2IKVMPlugin</classname>

</plugin>

5. that’s it.

1.2 How to run

In order to unparse a bunch of Scala source files, run scalac with the jdk2ikvm

compiler plugin with command-line options:

-Ystop:superaccessors /*- given that the plugin runs right after typer */

-sourcepath bla\bla\src

-P:jdk2ikvm:just-unparse

-P:jdk2ikvm:output-directory:bla\bla\out

-Xplugin where\to\find\jdk2ikvm.jar

Summing up, to the usual options for jdk2ikvm, just add -P:jdk2ikvm:just-unparse

1.3 Testing unparsing by roundtripping

By running with the ‘-P:jdk2ikvm:just-unparse’ option, the resulting tool can
pretty-print arbitrary Scala sources. What is that good for? This setting is
perfect to demonstrate that scala.tools.unparse is behavior-preserving:

1. unparse all files found under compiler and library in scala trunk

2. compile the resulting pretty-printed files with build.xml from scala trunk

3. all the tests in build.xml can be used to confirm that pretty-printing was
behavior-preserving.

3

http://lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/jdk2ikvm
http://lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/jdk2ikvm

1.4 Undoing synthetic artefacts added to ASTs till typer

These transformations comprise:

• those in Parsers.scala, including:

– desugaring of for comprehensions into filter, map, and flatMap.

– desugaring of for loops into foreach.

– recovering class definition syntax, Sec. 4.1

• those in SyntheticMethods.scala

Consider this: if those transformations were not reversible, i.e., if the pre-image
for a transformed tree couldn’t be recovered, then two or more programs with
different behavior would map to the same transformed program. That’s not the
case, ergo we can recover the structure of the input sources (not its layout nor
its before-desugaring representation, but what matters for compiling again: a
program with the same structure and behavior as that given by the source file).

2 When unparsed output looks different from
your input . . . it’s on purpose

2.1 Inlined XML

For example, the following:

val b = <book>Zen and the art of yo-yo</book>

is unparsed into:

val b : scala.xml.Elem = new scala.xml.Elem((null), ("book"), scala.xml.Null, scala.$scope,

({

val $buf : scala.xml.NodeBuffer = new scala.xml.NodeBuffer()

$buf.&+(new scala.xml.Text(("Zen and the art of yo-yo")))

$buf

}: scala.xml.Node))

TODO: Upon trying to compile the above, we get an error (missing implicit
conversion?)

type mismatch;

found : scala.xml.NodeBuffer

required: scala.xml.Node

$buf

^

2.2 Long form for existential types

The unparser prints:

Class[_$1] forSome { type _$1 }

4

rather than the semantically equivalent Class[_]. This is on purpose, so as to
allow greping for existentials. The chosen output syntax does however elide type
bounds when they are default:

/**

* [">:" TypeTree] ["<:" TypeTree]

*/

override def TypeBoundsTree(tree: TypeBoundsTree, lo: Tile, hi: Tile): Tile = {

def skipDefault(t: Tree, symForDefault: Symbol, longForm: Tile) = {

if (t.symbol eq symForDefault) EmptyTile

else longForm

}

val loPart = skipDefault(tree.lo, definitions.NothingClass, ">: " ~ lo ~ Blank)

val hiPart = skipDefault(tree.hi, definitions.AnyClass, "<: " ~ hi ~ Blank)

loPart ~ hiPart

}

3 Under the hood

3.1 Tiling of Text Blocks

Rather than writing a full-fledged pretty-printer (go to scala-refactoring for
that) our unparser adopts a text blocks metaphor (ie., rectangular text regions
that can be juxtaposed). Allowing for arbitrary layout of text blocks would
result in non-parseable output, a situation we avoid when serializing rows of
text blocks (where blocks are potentially rectangular, i.e., with elements with
height > 1). In the following example, blocks B1 to B3 are serialized as depicted
in the diagram:

abc

abcabc

The utilities in TextTiling.scala allow obtaining the output show below for the
following snippet:

TilePrinter.newConsoleTilePrinter print tileF

def vTunnel(c: Int) = {

val str = c.toString + c.toString + c.toString

Flow(Vert, Array.fill(3)(StrTile(str)).toList)

}

def tileF = {

val t23 = row(vTunnel(2), vTunnel(3))

val t234 = column(t23, vTunnel(4))

row(vTunnel(1), t234)

}

5

Figure 1: FSharp lexical nesting colorizer, http://lorgonblog.wordpress.

com/2010/11/18/f-source-code-structural-colorizer-available/

// blanks shown as dots for better appreciation

111

111

111222

...222

...222333

......333

......333

...444

...444

...444

You might want to explore another variation of text tiling, this time to color-
code lexical scoping (Scala IDEs like IntelliJ show that on the vertical bar, but
colors as in Figure 1 provide for a more dramatic effect).

3.2 Visiting (yes, visiting) Scala ASTs

We want to fold a tree into a single value (a text block) and for that it’s handy
to have a traverser that hands over the results of folding children (post-order
traversal) as realized in TreeFolding.scala. The post-order processing part if
performed by a so called TreeReducer, which for a PackageDef is invoked as
follows:

def PackageDef(tree: PackageDef, pid: RefTree, stats: List[Tree]): R =

treeRedu.PackageDef(

tree, transform(pid),

transformTrees(stats)

)

where transform() and transformTrees() are hosted in TreeFolder, and the sig-
nature of the reducer for PackageDefs is:

6

http://lorgonblog.wordpress.com/2010/11/18/f-source-code-structural-colorizer-available/
http://lorgonblog.wordpress.com/2010/11/18/f-source-code-structural-colorizer-available/

Figure 2: Code organization of the unparser, Sec. 3.1

def PackageDef(tree: PackageDef, pid: R, stats: List[R]): R

where R is an abstract type of your choice.
In case the default visit order established by TreeFolder is not deemed ap-

propriate in some situation, the methods for the tree nodes in question can be
overridden (such as method PackageDef in TreeFolder).

In terms of the Transformer idiom of scala.tools.nsc.ast.Trees, we would
override instead the transform() method (which switches based on the node’s
shape) and call the super version for other cases than the ones of interest. For
our purposes, Transformer is too restrictive (transform returns a Tree, we want
to return a text block).

But visitors are a matter of taste! (I’ll keep using mine). Besides, the
resulting code organization allows for easy IDE navigation (Figure 2).

Other perspectives on visiting trees:

• The Visitor Pattern as a Reusable, Generic, Type-Safe Component,
http://ropas.snu.ac.kr/~bruno/papers/VisitorComponent.pdf

• Strategic Programming, http://homepages.cwi.nl/~ralf/eosp/

3.3 Unparsing the copy methods of case classes

The code in charge of emitting those methods (caseClassCopyMeth(cdef: ClassDef))
lives in Unapplies.scala as shown in Figure 3.

4 Unparsing recipe

The syntax to emit for an AST node may depend on its parent nodes, as follows:

• Some AST shapes are reused for different purposes (eg, a ValDef can stand
for a template member, block local, or method value param). In these
cases, their serialization usually depends on the context where their oc-
currences occur (in the ValDef example, the unparsing for both template
member and block local are the same, unlike for method value param).

7

http://ropas.snu.ac.kr/~bruno/papers/VisitorComponent.pdf
http://homepages.cwi.nl/~ralf/eosp/

Figure 3: Unparsing the copy methods of case classes (Sec. ??)

8

• Otherwise reversing the grammar production is context-independent.

To handle context-dependency the pattern discussed in Sec. 3.2 was adopted.
The rest of this section highlights some “syntax recovery recipes”, usually by
describing first the corresponding “syntax desugaring recipe” previously applied
by the compiler.

4.1 Recovering class definition syntax

The parser performs the following desugaring (by invoking method Template in
Trees.scala)

/** Generates a template with constructor corresponding to

*

* constrmods (vparams1_) ... (vparams_n) preSuper { presupers }

* extends superclass(args_1) ... (args_n) with mixins { self => body }

*

* This gets translated to

*

* extends superclass with mixins { self =>

* presupers’ // presupers without rhs

* vparamss // abstract fields corresponding to value parameters

* def <init>(vparamss) {

* presupers

* super.<init>(args)

* }

* body

* }

*/

4.1.1 Params to the class’ main constructor and arguments to the
superclass’ constructor (supercall arguments)

Of the arguments to

def Template(parents: List[Tree], self: ValDef, constrMods: Modifiers,

vparamss: List[List[ValDef]],

argss: List[List[Tree]],

body: List[Tree], superPos: Position)

the following need to be recovered during unparsing:

vparamss: List[List[ValDef]] // param lists for the main constructor

argss: List[List[Tree]] // arg lists for the first parent

The relevant portions of the desugaring are:

1. a DefDef representing the main constructor is always added to the body
of a non-trait class, with name nme.CONSTRUCTOR. This constructor comes
before any other because of the way the Template instance is built (it’s the
only element in the constrs list below):

Template(parents, self, gvdefs ::: vparamss2.flatten ::: constrs ::: etdefs ::: rest)

This DefDef’s value params mirror the vparamss of the concrete syntax,
but:

9

(a) each param’s original modifiers have been ANDed as shown below,
and

var vparamss1 =

vparamss map

(vps => vps.map { vd =>

atPos(vd.pos.focus) {

ValDef(

Modifiers(vd.mods.flags &

(IMPLICIT | DEFAULTPARAM | BYNAMEPARAM) | PARAM | PARAMACCESSOR)

withAnnotations vd.mods.annotations,

vd.name,

vd.tpt.duplicate,

vd.rhs.duplicate

) // closes ValDef

} // closes atPos

} // closes vd =>

) // closes vparamss map

(b) an empty list may have been pre-pended to list of params to recover.
Please notice that the resulting DefDef is the only place from which
the original args for the first parent can be recovered (argss below):

// convert (implicit ...) to ()(implicit ...) if its the only parameter section

if (vparamss1.isEmpty || !vparamss1.head.isEmpty && vparamss1.head.head.mods.isImplicit)

vparamss1 = List() :: vparamss1;

val superRef: Tree = atPos(superPos) {

Select(Super(tpnme.EMPTY, tpnme.EMPTY), nme.CONSTRUCTOR)

}

val superCall = (superRef /: argss) (Apply)

List(

atPos(wrappingPos(superPos, lvdefs ::: argss.flatten)) (

DefDef(constrMods,

nme.CONSTRUCTOR,

List(),

vparamss1,

TypeTree(),

Block(lvdefs ::: List(superCall),

Literal(())

)

)

)

)

2. traits don’t have constructor params, so there’s nothing to recover in this
case. However, similarly to the case above, a DefDef may be added for
a trait class, but only if some member !treeInfo.isInterfaceMember. In
this case, the DefDef’s name is nme.MIXIN_CONSTRUCTOR, its type params list
is empty, and its value params list is List(List())

There’s no shortcut to the above. One might be tempted to recover the main
constructor’s params by checking a ValDef’s mods.isCaseAccessor || mods.isParamAccessor

after noticing:

// vparamss2 are used as field definitions for the class. remove defaults

val vparamss2 = vparamss map (vps => vps map { vd =>

treeCopy.ValDef(vd, vd.mods &~ DEFAULTPARAM, vd.name, vd.tpt, EmptyTree)

})

10

Template(parents, self, gvdefs ::: vparamss2.flatten ::: constrs ::: etdefs ::: rest)

but the flattening means that the boundaries of multiple param-lists can’t be
recovered anymore. For example,

class C(str: String)(c: Char) extends A

results in the flat list classParams shown below:

4.1.2 Shortcut to fabricate supercallArgs

An AST-aware pre-processor (Sec. 5) need not follow all steps of preparing an
AST as the compiler does for super-call arguments. The following Concrete
Syntax Tree node (borrowed from the Scala Refactoring1 library) can be used
instead.

/**

* The call to the super constructor in a class:

* class A(i: Int) extends B(i)

* ^^^^

*/

case class SuperConstructorCall(classId: Ident, args: List[global.Tree]) extends Tree

There’s no similar fake node for “main constructor parameters”, because
piecing them together AST-wise is not as cumbersome (relatively speaking).

4.1.3 Early Defs

We want to recover lvdefs and etdefs below:

// method Template in Trees.scala returns

Template(parents, self, gvdefs ::: vparamss2.flatten ::: constrs ::: etdefs ::: rest)

which together make up the “early defs”. lvdefs and etdefs result from:

val (edefs, rest) = body span treeInfo.isEarlyDef /*- isEarlyDef includes both ValDef’s and TypeDef’s */

val (evdefs, etdefs /*- <-- */) = edefs partition treeInfo.isEarlyValDef /*- isEarlyValDef just ValDef’s */

val (lvdefs, gvdefs) = evdefs map {

case vdef @ ValDef(mods, name, tpt, rhs) =>

val fld = treeCopy.ValDef(/*- each fld will become a ValDef in gvdefs */

vdef.duplicate, mods, name,

atPos(vdef.pos.focus) { TypeTree() setOriginal tpt setPos tpt.pos.focus }, // atPos in case

EmptyTree)

val local = treeCopy.ValDef(vdef, Modifiers(PRESUPER), name, tpt, rhs) /*- but initializers (rhs)

are to be found here. */

(local, fld)

} unzip

1http://scala-refactoring.org/

11

http://scala-refactoring.org/

Listing 1: Recovering loops (Sec. 4.2)

trait JumpsInterceptors { this: TreeFolder =>

/**

* (1) "while" "(" cond ")" "{" stats "}"

*

* (2) "do" "{" stats "}" "while" "(" cond ")"

*/

override def LabelDef(tree: LabelDef, name: Name, params: List[Ident], rhs: Tree): Tile = {

tree match {

// while (cond) body ==> LabelDef($L, List(), if (cond) { body; L$() } else ())

case laDef @ LabelDef(name, params, If(cond, thenp @ Block(stats, laCall), _)) =>

// FYI laCall @ Apply(laCallFun : Ident, Nil)

// For compiler trees, assert(laDef.name eq laCallFun.name) holds.

// But we don’t check that because we also want to unparse trees

// "with just enough concrete-syntax structure in them"

row("while ", parens(xform(cond)), blockify(transformTrees(stats)))

// do body while (cond) ==> LabelDef($L, List(), body; if (cond) L$() else ())

case label @ LabelDef(_, _, Block(stats, If(cond, _, _))) =>

row("do ", blockify(transformTrees(stats)), " while ", parens(xform(cond)))

}

}

}

TODO

4.2 Recovering loops

This is relatively well known (Listing 1) but a comment also applies when un-
parsing other AST nodes:

For trees produced by the compiler, assert(. . .) always holds.
But we don’t check that because we also want to unparse trees “with
just enough concrete-syntax structure in them”, as for example those
produced by API migration tools.

4.3 Recovering patterns in Match expressions

This turns out to be easier than expected (Figure 4) thanks to utility methods
borrowed from Patterns.scala.

4.4 Unparsing lambdas

Another merry case where the source comments are as good as documentation.
For example,

List(1, 2, 3) collect { case i: Int => i }

is unparsed to

12

Figure 4: Unparsing patterns, Sec. 4.3

scala.collection.immutable.List.apply[Int]((1), (2), (3)).collect[Int, Any]

((x0$1 : Int) => x0$1 match { case i : scala.Int => i })

(scala.collection.immutable.List.canBuildFrom[Int])

where

((x0$1 : Int) => x0$1 match { case i : scala.Int => i })

results from unparsing the tree: Function argument received by:

override def Function(tree: Function, vparams: List[ValDef], body: Tree): Tile = {

val vparamsList = unparseFormalParams(vparams)

forceParens(vparamsList ~ " => " ~ xform(body))

}

5 Beyond plain unparsing: pre-processing (re-
solved, typed) ASTs

Out of the box, the unparser can be used to help in understanding what phases
like specialize do on input ASTs. With additional work, an AST-aware pre-
processor can be built (jdk2ikvm serves as blueprint). There are many applica-
tion areas for such processors:

• code expansion as favored by runtime-checking techniques,

– Temporal JML,
http://www.eecs.ucf.edu/~fhussain/papers/temporaljmlc.pdf

– In general, the kind of rewriting that Code Contracts tools perform
on bytecode, can be done by a Scala pre-processor.

13

http://www.eecs.ucf.edu/~fhussain/papers/temporaljmlc.pdf

ccrewrite, a tool for generating runtime checks from Code Contracts,
http://research.microsoft.com/en-us/projects/contracts/

• As another example, annotations can be used to guide AST rewriting:
http://www.scala-lang.org/sid/5

• perform partial evaluation of programs,

• re-phrase custom syntax into DSLs (of the staged or embedded varieties)

• translation of dynamically-typed languages into Scala,
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/

OOScriptToScala.pdf

• sub-expression line-debugging. Quoting from http://article.gmane.

org/gmane.comp.lang.scala.internals/4142

The idea is to have an option in the debugger to temporarily ex-
pand expressions written on a single line into code that expands
the expression into intermediate function calls, on multiple lines.
This way the debugger could step into the code and inspect in-
termediate function return values. Once the debugger finished
the session, the code would revert to the original version.

For example, this line

val r =(ls filter (_>1) sort (_<_) zipWithIndex) filter

{v=>(v._2)%2==0} map {_._1}

would temporarily expand into

val r_1 = ls.filter(_>1)

val r_2 = r_1.sort(_<_)

val r_3 = r_2.zipWithIndex

val r_4 = r_3.filter(v => (v._2) % 2 == 0)

val r = r_4.map(_._1)

6 TODO: Unparsing after explicitouter and erasure

The unparser has been initially designed to handle ASTs after all phases up to
explicitouter.

• In order for the unparser to work after erasure, the Scala backend has to
receive non-erased type arguments (that’s work in progress for Scala.NET)

• In order for unparsed output to be compilable again after phase explicitouter,
the LabelDefs (representing jumps) that TransMatch inserts have to be
rephrased in Scala terms:

– defunctionalizing forward jumps and building an explicit state ma-
chine, http://www.scala-lang.org/node/7423

– Sec. 2.2 Recovering loops from LabelDef-Apply pairs, http://www.
sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/ScalaMinusMinus.

pdf

14

http://research.microsoft.com/en-us/projects/contracts/
http://www.scala-lang.org/sid/5
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/OOScriptToScala.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/OOScriptToScala.pdf
http://article.gmane.org/gmane.comp.lang.scala.internals/4142
http://article.gmane.org/gmane.comp.lang.scala.internals/4142
http://www.scala-lang.org/node/7423
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/ScalaMinusMinus.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/ScalaMinusMinus.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/ScalaMinusMinus.pdf

Regarding the second item, some jumps can be recast right away in terms
of loops:

// while (cond) body ==> LabelDef($L, List(), if (cond) { body; L$() } else ())

case laDef @ LabelDef(name, params, If(cond, thenp @ Block(stats, laCall), _)) =>

// FYI laCall @ Apply(laCallFun : Ident, Nil)

// For compiler trees, assert(laDef.name eq laCallFun.name) holds.

// But we don’t check that because we also want to unparse trees

// "with just enough concrete-syntax structure in them"

row("while ", parens(xform(cond)), blockify(transformTrees(stats)))

// do body while (cond) ==> LabelDef($L, List(), body; if (cond) L$() else ())

case label @ LabelDef(_, _, Block(stats, If(cond, _, _))) =>

row("do ", blockify(transformTrees(stats)), " while ", parens(xform(cond)))

but in general the technique described in http://www.scala-lang.org/node/

7423 is necessary.

7 FYI: Scala subset reaching each phase

A glimpse of this is shown in Listing 2.

15

http://www.scala-lang.org/node/7423
http://www.scala-lang.org/node/7423

Listing 2: Scala subset reaching each phase, Sec. 7

class TreeMatchTemplate {

// non-trees defined in Trees

//

// case class ImportSelector(name: Name, namePos: Int, rename: Name, renamePos: Int)

// case class Modifiers(flags: Long, privateWithin: Name, annotations: List[Tree], positions: Map[Long, Position])

//

def apply(t: Tree): Unit = t match {

// eliminated by typer

case Annotated(annot, arg) =>

case AssignOrNamedArg(lhs, rhs) =>

case DocDef(comment, definition) =>

case Import(expr, selectors) =>

// eliminated by refchecks

case ModuleDef(mods, name, impl) =>

case TypeTreeWithDeferredRefCheck() =>

// eliminated by erasure

case TypeDef(mods, name, tparams, rhs) =>

case Typed(expr, tpt) =>

// eliminated by cleanup

case ApplyDynamic(qual, args) =>

// eliminated by explicitouter

case Alternative(trees) =>

case Bind(name, body) =>

case CaseDef(pat, guard, body) =>

case Star(elem) =>

case UnApply(fun, args) =>

// eliminated by lambdalift

case Function(vparams, body) =>

// eliminated by uncurry

case AppliedTypeTree(tpt, args) =>

case CompoundTypeTree(templ) =>

case ExistentialTypeTree(tpt, whereClauses) =>

case SelectFromTypeTree(qual, selector) =>

case SingletonTypeTree(ref) =>

case TypeBoundsTree(lo, hi) =>

// survivors

case Apply(fun, args) =>

case ArrayValue(elemtpt, trees) =>

case Assign(lhs, rhs) =>

case Block(stats, expr) =>

case ClassDef(mods, name, tparams, impl) =>

case DefDef(mods, name, tparams, vparamss, tpt, rhs) =>

case EmptyTree =>

case Ident(name) =>

case If(cond, thenp, elsep) =>

case LabelDef(name, params, rhs) =>

case Literal(value) =>

case Match(selector, cases) =>

case New(tpt) =>

case PackageDef(pid, stats) =>

case Return(expr) =>

case Select(qualifier, selector) =>

case Super(qual, mix) =>

case Template(parents, self, body) =>

case This(qual) =>

case Throw(expr) =>

case Try(block, catches, finalizer) =>

case TypeApply(fun, args) =>

case TypeTree() =>

case ValDef(mods, name, tpt, rhs) =>

// missing from the Trees comment

case Parens(args) => // only used during parsing

case SelectFromArray(qual, name, erasure) => // only used during erasure

}

}

16

	Getting Started
	How to build
	How to run
	Testing unparsing by roundtripping
	Undoing synthetic artefacts added to ASTs till typer

	When unparsed output looks different from your input …it's on purpose
	Inlined XML
	Long form for existential types

	Under the hood
	Tiling of Text Blocks
	Visiting (yes, visiting) Scala ASTs
	Unparsing the copy methods of case classes

	Unparsing recipe
	Recovering class definition syntax
	Params to the class' main constructor and arguments to the superclass' constructor (supercall arguments)
	Shortcut to fabricate supercallArgs
	Early Defs

	Recovering loops
	Recovering patterns in Match expressions
	Unparsing lambdas

	Beyond plain unparsing: pre-processing (resolved, typed) ASTs
	TODO: Unparsing after explicitouter and erasure
	FYI: Scala subset reaching each phase

