
Charting new territory: bytecode verification by

type-checking, overflow checking, unsigned

integrals, and a nullables primer

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

September 1st, 2010

Contents

1 Inserting safe castclass to keep peverify happy 1
1.1 Example . 1
1.2 How peverify merges types . 2
1.3 A first attempt . 4
1.4 Custom type-merge functions while reusing the typeflow framework . . 4
1.5 Similar (identical?) problem: computing stack-map frames for jvm6 . . 5
1.6 Another prototype . 6
1.7 TODO . 8

2 Overflow checking and the CIL for that 8
2.1 The div special case . 9

3 Unsigned integrals and Scala.NET 9
3.1 Background on CLR unsigned integrals 10
3.2 int[] is uint[] in C# (syntax lumps together casts and coercions) . 10

4 What makes Nullable<T>s (slightly) different from other valuetypes 12
4.1 Initialization and assignment . 13
4.2 No boxing, no unboxing, but is it monadic style? Really? 14
4.3 How compilers special-cases Nullable (a bad thing) 15

4.3.1 F# . 15
4.3.2 C# . 16
4.3.3 CLR . 16

5 Sidenotes 17
5.1 FYI: Unsigned integrals in other .NET languages 17
5.2 FYI: AddressOf and byref<ty> in F# 18

1 Inserting safe castclass to keep peverify happy

1.1 Example

Can we in forMSIL-mode add those redundant casts? They would unclutter the
peverify output (code runs ok without them).

1

http://lamp.epfl.ch/~magarcia

Many examples (also in other compilers1). One of them:

[IL]: scala.util.parsing.input.OffsetPosition::gd1$1

[offset 0x00000009][found value ’java.lang.CharSequence’]

Unexpected type on the stack.(Error: 0x80131854)

.method public hidebysig virtual instance class scala.collection.immutable.Map

updated(object key,

object ’value’) cil managed

{

// Code size 164 (0xa4)

.maxstack 8

.locals init (object V_0,

object V_1)

. . .

IL_009e: newobj instance void scala.collection.immutable.Map$/Map3::.ctor(object,

object,

object,

object,

object,

object)

IL_00a3: ret /*- for those in the know, class scala.collection.immutable.Map$/Map3

does implement the return type of this method,

but peverify seems not to be one of them ... */

} // end of method Map2::updated

1.2 How peverify merges types

The relevant spec fragment is §III.1.8.1.3 Merging stack states:

the overall merge shall be computed by merging the states slot-by-slot
as follows. Let T be the type from the slot on the newly computed
state and S be the type from the corresponding slot on the previously
stored state. The merged type, U, shall be computed as follows (recall
that S := T is the compatibility function defined in §1.8.1.2.2):

1. if S := T then U=S

2. Otherwise, if T := S then U=T

3. Otherwise, if S and T are both object types, then let V be the closest
common supertype of S and T then U=V.
4. Otherwise, the merge shall fail.

Merging a controlled-mutability managed pointer with an ordinary
(that is, non-controlled-mutability) managed pointer to the same type
results in a controlled-mutability managed pointer to that type.

Implementation Specific (Microsoft): The V1.0 release of the Mi-
crosoft CLI will merge interfaces by arbitrarily choosing the first
common interface between the two verification types being merged.

The implementation of the the above in CCI’s TypeHelper is:

/// <summary>

/// Returns the merged type of two types as per the verification algorithm in CLR.

1http://connect.microsoft.com/VisualStudio/feedback/details/96401/

peverify-false-unexpected-type-on-the-stack-on-c-ternary-operator-when-mixing-array-and-ilist1-types

2

http://connect.microsoft.com/VisualStudio/feedback/details/96401/peverify-false-unexpected-type-on-the-stack-on-c-ternary-operator-when-mixing-array-and-ilist1-types
http://connect.microsoft.com/VisualStudio/feedback/details/96401/peverify-false-unexpected-type-on-the-stack-on-c-ternary-operator-when-mixing-array-and-ilist1-types

Listing 1: Sec. 1.2

def nearestSuperclass(type1: Type, type2: Type): Type = {

var depth1 : Int = 0

var t1 : Type = type1

var typeIter = t1

while (typeIter != null) {

typeIter = if (typeIter.parents.isEmpty) null else typeIter.parents.head

depth1 = depth1 + 1

}

var depth2 : Int = 0

var t2 : Type = type2

typeIter = t2

while (typeIter != null) {

typeIter = if (typeIter.parents.isEmpty) null else typeIter.parents.head

depth2 = depth2 + 1

}

while (depth1 > depth2) {

t1 = t1.parents.head

depth1 = depth1 - 1

}

while (depth2 > depth1) {

t2 = t2.parents.head

depth2 = depth2 - 1

}

while (depth1 > 0)

{

if (t1 == t2)

return t1

t1 = t1.parents.head

t2 = t2.parents.head

depth1 = depth1 - 1

}

return null

}

/// </summary>

//^ [Pure]

public static ITypeDefinition MergedType(ITypeDefinition type1, ITypeDefinition type2) {

if (TypeHelper.TypesAreAssignmentCompatible(type1, type2))

return type2;

if (TypeHelper.TypesAreAssignmentCompatible(type2, type1))

return type1;

ITypeDefinition/*?*/ lcbc = TypeHelper.MostDerivedCommonBaseClass(type1, type2);

if (lcbc != null) {

return lcbc;

}

return Dummy.Type;

}

In turn, the Scala formulation of MostDerivedCommonBaseClass can be found in
Listing 1.

Also in CCI, the metadata model to code model decompiler has visitor called
Unstacker that computes type-stacks. See project http://cciast.codeplex.

com/.

3

http://cciast.codeplex.com/
http://cciast.codeplex.com/

1.3 A first attempt

There’s a lot of knowledge about lubs that GenICode does not record in the ICode
instruction stream (tentative idea: how about having a pseudo-instruction VERIF CAST

in addition to CHECK CAST to track that information?). Coming back to the
if-then-else example, and patching genLoadIf a bit:

private def genLoadIf(tree: If, ctx: Context, expectedType: TypeKind): (Context, TypeKind) = {

val If(cond, thenp, elsep) = tree

var thenCtx = ctx.newBlock

var elseCtx = ctx.newBlock

val contCtx = ctx.newBlock

genCond(cond, ctx, thenCtx, elseCtx)

val ifKind = toTypeKind(tree.tpe)

val thenKind = toTypeKind(thenp.tpe)

val elseKind = if (elsep == EmptyTree) UNIT else toTypeKind(elsep.tpe)

/*- CLR LUB START */

val lubAsPerPEVerify = icodes.msil_lubPEVerify(thenKind, elseKind)

if (!(lubAsPerPEVerify <:< ifKind)) {

// ifKind more specific than lubAsPerPEVerify

contCtx.bb.emit(VERIF_CAST(ifKind))

}

/*- CLR LUB END */

1.4 Custom type-merge functions while reusing the type-
flow framework

A straightforward way to extend the forward-dataflow framework (in pack-
age scala.tools.nsc.backend.icode.analysis) consists in directly subclassing
SemiLattice (usually by an object) and DataFlowAnalysis (where the val lattice

in the subclass is overriden with the object just mentioned). Current extensions
following this pattern:

• livenessLattice and LivenessAnalysis,

• rdefLattice and ReachingDefinitionsAnalysis,

• copyLattice and CopyAnalysis,

• the type lattice, type stack lattice, and type flow lattice (objects) and the
MethodTFA extends DataFlowAnalysis class.

We want to explore how to reuse most of MethodTFA while using a custom
lub function. After moving to traits the functionality we want to reuse:

4

a different lub function can be used as follows:

class MsilMethodTFA extends MethodTFA {

override val lattice = msil_typeFlowLattice

/* override def interpret(in: analysis.typeFlowLattice.Elem,

i: Instruction): analysis.typeFlowLattice.Elem =

super.interpret(in, i) */

}

Overriding other members (e.g., interpret) is also possible but in the example
not necessary. The only change performed,

object msil_typeFlowLattice extends {

val myTypeStackLattice = msil_typeStackLattice

val myTypeLattice = msil_typeLattice

} with TypeFlowLatticeTrait

in fact boils down to this:

object msil_typeLattice extends TypeLatticeTrait {

override def lub2(exceptional: Boolean)(a: Elem, b: Elem) =

if (a eq bottom) b

else if (b eq bottom) a

else icodes.msil_lubPEVerify(a, b)

}

1.5 Similar (identical?) problem: computing stack-map
frames for jvm6

Current effort on the backend for jvm-6 : http://github.com/dragos/scala/
tree/backend-jvm6 Can be tested by building the compiler with ’-target:jvm6’
and then running the produced compiler with java -XX:-FailOverToOldVerifier

(to disable the fallback to the old verifier). A few highlights:

5

http://github.com/dragos/scala/tree/backend-jvm6
http://github.com/dragos/scala/tree/backend-jvm6

• http://github.com/dragos/scala/tree/backend-jvm6/src/compiler/

scala/tools/nsc/backend/icode/analysis/

• file VerificationTypes.scala in that folder

Kinds of problems to solve, quoting from an email:

abstract class Base { def foo = 10 }

trait T extends Base { def bar = 20 }

class D1 extends T {}

class D2 extends T {}

object Test extends Application {

val x = null

val y = if (x ne null) new D1 else new D2

y.foo /*- call 1 */

(if (x ne null) new D1 else new D2).foo /*- call 2 */

}

The first call goes through, because erasure adds a cast to ’Base’
before the call. The second call fails. The problem is that a trait
that extends a class, is translated in the bytecode to extend Object.
That is because traits are interfaces, and it is impossible to extend a
non-interface. The lub of D1 and D2 is then Object (in the bytecode),
although in Scala it would be trait T, and the call to foo is well-typed.

Sidenotes:

• Updated class format specification (JSR 202)

• There are a few “Type Map Inference Tools” to bring classfiles from older
classfiles versions to 50.0, for example:

– ASM 3.1: org.objectweb.asm.tree.analysis provides a static byte-
code analysis framework on top of the tree package. It can be
used in addition to the tree package to implement really complex
class transformations that need to know the state of the stack map
frames for each instruction. Details at http://asm.ow2.org/doc/

developer-guide.html#controlflow

– Computing stack maps with interfaces, Frédéric Besson, Thomas
Jensen, and Tiphaine Turpin, http://www.irisa.fr/celtique/fbesson/
Computing_Stack_Maps_With_Interfaces.pdf

– ProGuard preverification

• Given a .class file, creates and injects StackMapTable attributes in it.
http://code.google.com/p/yasmit/. Written in Haskell.

1.6 Another prototype

A compiler plugin running after GenICode invokes a MethodTFA-like analysis that
sports a type-merge function as in peverify. This by itself does not insert the
required casts, but helps in visualizing disagreements between what peverify

guesses to be on the evaluation stack, what MethodTFA guesses, and what the
signatures expect (say, in the method signature for a CALL METHOD).

6

http://github.com/dragos/scala/tree/backend-jvm6/src/compiler/scala/tools/nsc/backend/icode/analysis/
http://github.com/dragos/scala/tree/backend-jvm6/src/compiler/scala/tools/nsc/backend/icode/analysis/
http://asm.ow2.org/doc/developer-guide.html#controlflow
http://asm.ow2.org/doc/developer-guide.html#controlflow
http://www.irisa.fr/celtique/fbesson/Computing_Stack_Maps_With_Interfaces.pdf
http://www.irisa.fr/celtique/fbesson/Computing_Stack_Maps_With_Interfaces.pdf
http://code.google.com/p/yasmit/

val icode_tfa = new analysis.MsilMethodTFA

val peverif_tfa = new analysis.PEVerifMethodTFA

Some examples (thanks Iulian!):

abstract class Base { def foo = 10 }

trait T extends Base { def bar = 20 }

case class D1 extends T {}

case class D2 extends T {}

object Test extends Application {

val c: Boolean = true

def moo(x: Base) {}

moo(if (c) new D1 else new D2)

}

The prototype reports the differences in type-stack guesses between ICode
and PEVerify. In particular for the invocation on “moo” those guesses are:

block: 4

pre icode typestack : [REFERENCE(scala.Product),REFERENCE(Test),REFERENCE(System.Object)]

pre peverif typestack : [REFERENCE(Base), REFERENCE(Test),REFERENCE(System.Object)]

0| CALL_METHOD TestTest.moo (dynamic)

post type stacks match : [REFERENCE(System.Object)]

1| RETURN (UNIT)

post typestacks match : [REFERENCE(System.Object)]

As of now, the peverify-like guess is not updated to reflect future usages of the
stack slot. For example, in case the invoked method has a formal parameter
with an interface type:

abstract class Base { def foo = 10 }

trait T extends Base { def bar = 20 }

case class D1 extends T {}

case class D2 extends T {}

object Test extends Application {

val c: Boolean = true

def moo(x: Base) {}

def moo2(x: Product) {}

moo(if (c) new D1 else new D2)

moo2(if (c) new D1 else new D2)

}

Running the compiler plugin will report still the same (although now moo2 ex-
pects a Product argument):

block: 7

pre icode type stack : [REFERENCE(scala.Product),REFERENCE(Test),REFERENCE(System.Object)]

pre peverif type stack : [REFERENCE(Base), REFERENCE(Test),REFERENCE(System.Object)]

0| CALL_METHOD TestTest.moo2 (dynamic)

post type stacks match : [REFERENCE(System.Object)]

1| RETURN (UNIT)

post type stacks match : [REFERENCE(System.Object)]

because the lub algorithm in use takes into account the base class hierarchy
only, giving “Base” because the IClasses to be instantiated in the if-then-else

7

branches are:

class D1 extends Base, T, ScalaObject, Product

class D2 extends Base, T, ScalaObject, Product

1.7 TODO

In order to insert casts, the prototype should additionally track:

• which (bb, idx) pushes each slot (see ReachingDefinitions in package
scala.tools.nsc.backend.icode.analysis. The reaching definitions anal-
ysis was covered in a previous write-up2).

• in case the type required (at the point of use) does not cover that guessed
as per peverify’s algorithm, the information about provenance can be
used to insert casts right after the load instruction.

• For an input program well-typed, the inserted casts will not fail at runtime.
I haven’t thought in detail about forward/backward jumps but the above
still sounds plausible to me.

In the moo2 example, the cast into Product would be inserted right after
loading what will be the argument to moo2’s invocation (one cast per branch of
the if-then-else).

2 Overflow checking and the CIL for that

Much like Scala’s synchronized, there’s in the C# checked operator (a keyword
actually) to make the directly enclosed expression or block throw a System.OverflowException

in case of over/underflow for integral arithmetic operations. The notes below
summarize both syntax and CIL aspects of this capability of the CLR, which
has no counterpart in the JVM. The C# spec’ed behavior mentions that in-
vocations are not affected by the checked/unchecked status at the callsite, so I
guess the same should apply in case of inlining. Easy solution: never let the
compiler inline, just the VM.

Quoting from the C# 3.0 lang spec [2, §7.5.12]

The checked and unchecked operators are used to control the overflow
checking context for integral-type arithmetic operations and conver-
sions.

checked-expression:

checked (expression)

unchecked-expression:

unchecked (expression)

2http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q2/

threeaddress.pdf

8

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q2/threeaddress.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q2/threeaddress.pdf

The checked operator evaluates the contained expression in a checked
context, and the unchecked operator evaluates the contained expres-
sion in an unchecked context. A checked-expression or unchecked-
expression corresponds exactly to a parenthesized-expression (§7.5.3),
except that the contained expression is evaluated in the given over-
flow checking context. The overflow checking context can also be
controlled through the checked and unchecked statements (§8.11).

Details about the built-in operations affected by overflow checking are given in
[2, §7.5.12]. The relevant CIL instructions are:

• instructions of the add, sub, and mul family, which can be qualified to per-
form .ovf checking (these instructions also exhibit .un variants to operate
on unsigned integrals).

• the conv.<toType>, conv.ovf.<toType>, and conv.ovf.<toType>.un instruc-
tions.

2.1 The div special case

The spec shows an irregularity of div with respect to (add, sub, mul) and
(add.ovf, sub.ovf, mul.ovf):

Stack Transition: . . . , value1, value2 → . . . , result

Exceptions:

Integral operations throw System.ArithmeticException if the result
cannot be represented in the result type. (This can happen if value1
is the smallest representable integer value, and value2 is -1.)

Integral operations throw DivideByZeroException if value2 is zero.

Implementation Specific (Microsoft): On the x86 an System.OverflowException

is thrown when computing (minint div -1).

Floating-point operations never throw an exception (they produce
NaNs or infinities instead, see Partition I).

Stated another way (quoting from the IKVM blog):

Why didn’t they define a div.ovf (like there are add.ovf, sub.ovf,

mul.ovf) in addition to div (and then make div behave consistently
with add, sub, mul)?

3 Unsigned integrals and Scala.NET

Coming back to one of the issues we saw in the Bootstrapping4.pdf write-up:

public static hidebysig System.Int64 System.Math::DivRem(System.Int64,

System.Int64,

System.Int64& /*- problem for TypeParser */

)

9

3.1 Background on CLR unsigned integrals

Because it does not mess with memory safety, signed and unsigned integrals of
the same size are assignment-compatible in the CLR. No conversion is required,
and no runtime check is performed for values-out-of-range. We can happily place
a scala.Byte where a System.Byte was expected (i.e., pass a signed argument to
an unsigned parameter).

For the same token, CIL arith instructions “interpret” the operands on the
stack as being signed or unsigned depending on the instruction variant used,
irrespective of the “sign” with which those operands were pushed, or whether
one but not the other is signed for that matter. Additional highlights can be
found in PartitionIII.1.1.1.

3.2 int[] is uint[] in C# (syntax lumps together casts
and coercions)

Quoting from StackOverflow:

// C# code

public void Test()

{

object intArray = new int[] { -100, -200 };

/*-

‘intArray is uint[]’ below

wouldn’t typecheck

without ‘object’ above

*/

if (intArray is uint[]) //why does this return true?

{

uint[] uintArray = (uint[])intArray; //why no class cast exception?

for (int x = 0; x < uintArray.Length; x++) { Console.Out.WriteLine(uintArray[x]); }

}

}

Quoting from the CLR spec:

8.3.2 Coercion

Coercion takes a value of a particular type and a desired type and
attempts to create a value of the desired type that has equivalent
meaning to the original value. Coercion can result in representation
changes as well as type changes; hence coercion does not necessarily
preserve the identity of two objects. There are two kinds of coer-
cion: widening, which never loses information, and narrowing, in
which information might be lost. An example of a widening coercion
would be coercing a value that is a 32-bit signed integer to a value
that is a 64-bit signed integer. An example of a narrowing coercion
is the reverse: coercing a 64-bit signed integer to a 32-bit signed in-
teger. Programming languages often implement widening coercions
as implicit conversions, whereas narrowing coercions usually require
an explicit conversion. Some widening coercion is built directly into
the VES operations on the built-in types (see §12.1). All other co-
ercion shall be explicitly requested. For the built-in types, the CTS
provides operations to perform widening coercions with no runtime
checks and narrowing coercions with runtime checks.

10

8.3.3 Casting

Since a value can be of more than one type, a use of the value needs
to clearly identify which of its types is being used . . . Unlike coercion,
a cast never changes the actual type of an object nor does it change
the representation. Casting preserves the identity of objects.

The following post by Eric Lippert3 refers to the way C# wallpapers the above:

• First source of confusion: in C# we have conflated two completely different
operations as “cast” operations. The two operations that we have conflated
are what the CLR calls casts and coercions.

We conflate these two things in C#, using the same operator syntax and
terminology for both casts and coercions. So now it should be clear that
there is no cast from int to float in the CLR. That’s a coercion, not a
cast. Second source of confusion: inconsistency in the CLR spec. The
CLR spec says in section 8.7

Signed and unsigned integral primitive types can be assigned to each other;
e.g., int8 := uint8 is valid. For this purpose, bool shall be considered
compatible with uint8 and vice versa, which makes bool := uint8 valid,
and vice versa. This is also true for arrays of signed and unsigned integral
primitive types of the same size; e.g., int32[] := uint32[] is valid.

And in section 4.3:

If the class of the object on the top of the stack does not implement class
(if class is an interface), and is not a derived class of class (if class is a
regular class), then an InvalidCastException is thrown.

• Second source of confusion: If Foo can be cast to Bar, then Foo[] can be
cast to Bar[].

Where does the spec for castclass say that int32[] can be
cast to uint32[]? It doesn’t. It should! int32 and uint32 are
assignment compatible, so they can be cast from one to the
other without changing bits. But they do not implement or
derive from each other.

Casting between assignment-compatible types should be legal. Really
what this should say is something like “If Foo can be cast to Bar

or Foo is assignment compatible with Bar then Foo[] can be cast to
Bar[]”. Fortunately, the CLR guys did NOT extend this goofy kind
of type variance to covariant and contravariant interfaces, which as
you know we are probably adding in a future version of C#. That
is, if we make IEnumerable<T> covariant in T, it will NOT be possible
to do a clever series of casts to trick the CLR into assigning an
IEnumerable<int> to an IEnumerable<uint>, even though it is possible
to make int[] go to uint[]. However, I think it is possible (I haven’t
checked this yet) to leverage the fact that int[] goes to uint[] to
similarly force IEnumerable<int[]> to go to IEnumerable<uint[]>.

3http://groups.google.com/group/microsoft.public.dotnet.languages.csharp/

browse_thread/thread/2d21bf036a23918e

11

http://groups.google.com/group/microsoft.public.dotnet.languages.csharp/browse_thread/thread/2d21bf036a23918e
http://groups.google.com/group/microsoft.public.dotnet.languages.csharp/browse_thread/thread/2d21bf036a23918e

Figure 1: [mscorlib]System.Nullable‘1<T>

This situation of the CLR being more generous about what identity-
preserving casts are legal may end up considerably complicating my
life in other ways involving covariance and contravariance as we
attempt to detect ambiguous conversions at compile time, but that’s
another story and we are still researching it.

4 What makes Nullable<T>s (slightly) different
from other valuetypes

The snippet below and its ILAsm counterpart (Listing 2) show a few translation
idioms, discussed in the followin subsections.

static void NullablesSample()

{

int? ni1 = null;

int? ni2 = 10;

int nres = (int)(ni1 + ni2);

}

12

Nullable values are created (Sec. 4.1) as for other valuetypes, while their use
in C# (“propagate nulls”) involves syntax sugar to reproduce monadic style
(Sec. 4.2). Talking about syntax sugar, the C# type-ref “int?” can be expressed
in Scala for example as ?[Int], after aliasing type ?[T <: System.ValueType]

= System.Nullable[T].

4.1 Initialization and assignment

Creating values of nullables is no different from other valuetypes. One may:

• start with a managed pointer and invoke either innitobj or call the single-
arg constructor; or

• start with a raw value and newobj to obtain a nullable on the stack. The
same effect can be achieved with the static op_Implicit of System.Nullable‘1<T>.

An assignment to a nullable (Figure 1)may have as as RHS any of: null, a
compatible raw value, or a compatible nullable. Examples follow for the first
two cases (the third involves copying object references, in the example ldloc.s

ni1; stloc.s ni2 would achieve that).

• the shortest instruction sequence that assigns null involves initializing in
place to the “default value”: load a managed pointer for the LHS, followed
by initobj with [mscorlib]System.Nullable‘1<V> as typeTok (where V is
the non-nullable valuetype in question)

• there’s no no-args constructor for nullables, and the single-arg constructor
(invoked directly below) expects a raw value as argument (i.e., null can’t
be loaded). Like this:

IL_0009: ldloca.s ni2

IL_000b: ldc.i4.s 10

IL_000d: call instance void valuetype [mscorlib]System.Nullable‘1<int32>::.ctor(!0)

• there’s a static method receiving a raw value that leaves a nullable on the
stack, op Implicit, used as follows:

IL_0009: ldc.i4.s 10

IL_000b: call valuetype [mscorlib]System.Nullable‘1<!0> valuetype [mscorlib]System.Nullable‘1<int32>::op_Implicit(!0)

In turn, op Implicit is defined as follows:

.method public hidebysig specialname static

valuetype System.Nullable‘1<!T> op_Implicit(!T ’value’) cil managed

{

// Code size 7 (0x7)

.maxstack 8

IL_0000: ldarg.0

IL_0001: newobj instance void valuetype System.Nullable‘1<!T>::.ctor(!0)

IL_0006: ret

} // end of method Nullable‘1::op_Implicit

BTW, attempting to directly assign null to a nullable (ldnull, stloc for ex-
ample) results in an “Unexpected type on the stack” error (“[found Nullobjref

13

’NullReference’][expected value ’System.Nullable‘1[System.Int32]’]”). The
very same error is raised by peverify for the instructions:

IL_0001: ldnull

IL_0002: box valuetype [mscorlib]System.Nullable‘1<int32> /*- fails to pass peverify */

IL_0001: ldc.i4.s 10

IL_0002: box valuetype [mscorlib]System.Nullable‘1<int32>

/*- fails too: [found Int32][expected value ’System.Nullable‘1[System.Int32]’] */

4.2 No boxing, no unboxing, but is it monadic style? Re-
ally?

The statement int nres = (int)(ni1 + ni2); in the example gets translated
into the pseudocode below (full details in Listing 2). Given the null-value in
ni1, an InvalidOperationException will be thrown.

IL_0014: C0 := ni1

IL_0016: C1 := ni2

IL_0027: if (C0.HasValue && C1.HasValue) {

push (C0.GetValueOrDefault() + C1.GetValueOrDefault())

} else {

C2 := null;

push C2;

}

IL_0049: pop C2

IL_004b: res := C2.get_Value()

IL_0053: ret

Samples of monadic style in C# (the Maybe monad, nullables in particular):

• Eric Lippert, Monads in plain English4.

• The example below is reproduced from Wes Dyer’s article on the subject5.

var r = from x in 5.ToMaybe()

from y in Maybe<int>.Nothing

select x + y;

// Console.WriteLine(r.HasValue ? r.Value.ToString() : "Nothing");

// would display "Nothing"

And now, all over in Scala:

• Burak Emir, Monads in Scala: http://lamp.epfl.ch/~emir/bqbase/

2005/01/20/monad.html

• arithmetic with Options, http://quoiquilensoit.blogspot.com/2009/
11/using-arithmetic-expression-with-option.html

4http://stackoverflow.com/questions/2704652/monad-in-plain-english-for-the-oop-programmer-with-no-fp-background/

2704795#2704795
5http://blogs.msdn.com/b/wesdyer/archive/2008/01/11/the-marvels-of-monads.aspx

14

http://lamp.epfl.ch/~emir/bqbase/2005/01/20/monad.html
http://lamp.epfl.ch/~emir/bqbase/2005/01/20/monad.html
http://quoiquilensoit.blogspot.com/2009/11/using-arithmetic-expression-with-option.html
http://quoiquilensoit.blogspot.com/2009/11/using-arithmetic-expression-with-option.html
http://stackoverflow.com/questions/2704652/monad-in-plain-english-for-the-oop-programmer-with-no-fp-background/2704795##2704795
http://stackoverflow.com/questions/2704652/monad-in-plain-english-for-the-oop-programmer-with-no-fp-background/2704795##2704795
http://blogs.msdn.com/b/wesdyer/archive/2008/01/11/the-marvels-of-monads.aspx

4.3 How compilers special-cases Nullable (a bad thing)

4.3.1 F#

There’s no syntax sugar for nullable types in F#6, because they don’t correspond
cleanly to the Option abstraction. Quoting from http://connect.microsoft.

com/VisualStudio/feedback/details/470052/f-nullable-t-vs-option-t,
(January 2009, by Luke Hoban, F# Program Manager):

Option is designed to act as a type-explicit representation of a no-
value-present condition. It is used to augment any existing type with
a single additional value. Nullable, on the other hand, was designed
to provide optional nullability for .NET struct types, to ensure that
null was a consistently available value across both reference types and
(nullable) struct types – in particular for O/R mapping scenarios.

The Nullable type pretty fundamentally does not accomplish the de-
sign goal of Option though – its struct constraint means that it cannot
add an additional value to anything but a struct type, and so cannot
be used to represent the no-value-present condition in any generic
functions.

For example, the F# function List.tryFind is a common operation
for searching a List using a given predicate. It can return either an
element of the list, or nothing. This requires a type satisfying the
Option design criteria to encode the return value – a type which has
all the values of the List element type, plus one to represent “not
found”.

There is room to provide further Nullable support in the F# lan-
guage, and much of this can be done today through user defiend
operators and conversions. We expect to look at doing more of this
in a future version of F#.

Regarding arithmetic involving nullables7:

F# doesn’t automatically lift operators for nullable or option types,
so the easiest way to start is to write something like this:

> let lift op a b =

match a, b with

| Some(av), Some(bv) -> Some(op av bv)

| _, _ -> None;;

val lift : (’a -> ’b -> ’c) -> ’a option -> ’b option -> ’c option

> let (+?) a b = lift (+) a b

let (-?) a b = lift (-) a b;;

val (+?) : int option -> int option -> int option

val (-?) : int option -> int option -> int option

> (Some 10) +? (Some 32);;

val it : int option = Some 42

> (Some 10) -? None;;

val it : int option = None

6http://stackoverflow.com/questions/946815/f-nullablet-support
7http://cs.hubfs.net/forums/thread/11296.aspx

15

http://connect.microsoft.com/VisualStudio/feedback/details/470052/f-nullable-t-vs-option-t
http://connect.microsoft.com/VisualStudio/feedback/details/470052/f-nullable-t-vs-option-t
http://stackoverflow.com/questions/946815/f-nullablet-support
http://cs.hubfs.net/forums/thread/11296.aspx

In addition, you can use a monad, e.g. something very similar to the
AttemptBuilder example8 on either ’option’ or ’Nullable’ and then
use e.g.

myMonad {

let! a = ...

let! b = ...

return a + b

}

4.3.2 C#

Some areas where the C# compiler is aware about nullables:

• null comparison, checks HasValue property.

• ternary operator ?? under the hood: testing HasValue and conditionally
calling GetValueOrDefault.

• the following two lines are equivalent:

int? a = null;

Nullable<int> b = new Nullable<int>();

4.3.3 CLR

The CLR knows about nullable types too - it makes sure that if you
box the null value of a nullable type, you end up with a null reference.
(And likewise you can unbox a null reference to the null value of a
nullable type.)

Getting the design right for nullable support took a few iterations: http:

//blogs.msdn.com/b/somasegar/archive/2005/08/11/450640.aspx

As several of you pointed out, the Nullable type worked well only in
strongly-typed scenarios. Once an instance of the type was boxed (by
casting to the base Object type), it became a boxed value type, and
no matter what its original null state claimed, the boxed value-type
was never null.

int? x = null;

object y = x;

if (y == null) { // oops, it is not null?

...

}

It also became increasingly difficult to tell whether a variable used in
a generic type or method was ever null.

void Foo<T>(T t) {

if (t == null) { // never true if T is a Nullable<S>?

}

}

8http://blogs.msdn.com/dsyme/archive/2007/09/22/some-details-on-f-computation-expressions-aka-monadic-or-workflow-syntax.

aspx

16

http://blogs.msdn.com/b/somasegar/archive/2005/08/11/450640.aspx
http://blogs.msdn.com/b/somasegar/archive/2005/08/11/450640.aspx
http://blogs.msdn.com/dsyme/archive/2007/09/22/some-details-on-f-computation-expressions-aka-monadic-or-workflow-syntax.aspx
http://blogs.msdn.com/dsyme/archive/2007/09/22/some-details-on-f-computation-expressions-aka-monadic-or-workflow-syntax.aspx

Clearly this had to change . . .

The outcome is that the Nullable type is now a new basic runtime
intrinsic. It is still declared as a generic value-type, yet the
runtime treats it special. One of the foremost changes is that
boxing now honors the null state. A Nullabe int now boxes to become
not a “boxed Nullable int” but a “boxed int” (or a “null reference”
as the null state may indicate.) Likewise, it is now possible to unbox
any kind of “boxed valuetype” into its “nullable type” equivalent.

int x = 10;

object y = x;

int? z = (int?) y; // unbox into a Nullable<int>

Together, these changes allow you to mix and match Nullable types
with boxed types in a variety of loosely typed API’s such as reflection.
Each becomes an alternative, interchangeable representation of the
other.

The C# language introduced additional behaviors that make the dif-
ference between the Nullable type and reference types even more
seamless. For example, since boxing now removes the wrapper,
boxing instead the enclosed type, other kinds of coercions that also
implied boxing became interesting. It is now possible to coerce a Nul-
lable type to an interface implemented by the enclosed type.

int? x = 0;

IComparable<int> ic = x; // implicit coercion

TODO: Nullables behave on the evaluation stack like the named wrapper
classes (java.lang.Long, etc.) of Java. On the other hand, their contents are
accessed not through boxing/unboxing but using HasValue, get Value, and
GetValueOrDefault.

5 Sidenotes

• Comments on CLR verification, http://higherlogics.blogspot.com/

2010/05/cil-verification-and-safety.html

• http://higherlogics.blogspot.com/search/label/CIL

• peverify reacting differently for unbox - ldobj on v1.1 vs. v2.0,
http://objectmix.com/dotnet/97673-peverify-reacting-differently-unbox-ldobj-v1-1-v2-0-a.

html

5.1 FYI: Unsigned integrals in other .NET languages

F# supports all CIL integral types, including the non-portable native layouts.
For example [1, §3.8], literals of each integral type can be:

token sbyte = xint ’y’ -- e.g., 34y

token byte = xint ’uy’ -- e.g., 34uy

17

http://higherlogics.blogspot.com/2010/05/cil-verification-and-safety.html
http://higherlogics.blogspot.com/2010/05/cil-verification-and-safety.html
http://higherlogics.blogspot.com/search/label/CIL
http://objectmix.com/dotnet/97673-peverify-reacting-differently-unbox-ldobj-v1-1-v2-0-a.html
http://objectmix.com/dotnet/97673-peverify-reacting-differently-unbox-ldobj-v1-1-v2-0-a.html

token int16 = xint ’s’ -- e.g., 34s

token uint16 = xint ’us’ -- e.g., 34us

token int32 = xint ’l’ -- e.g., 34l

token uint32 = xint ’ul’ -- e.g., 34ul

| xint ’u’ -- e.g., 34u

token nativeint = xint ’n’ -- e.g., 34n

token unativeint = xint ’un’ -- e.g., 34un

token int64 = xint ’L’ -- e.g., 34L

token uint64 = xint ’UL’ -- e.g., 34UL

| xint ’uL’ -- e.g., 34uL

5.2 FYI: AddressOf and byref<ty> in F#

Quoting from [1, §6.5.5] (The AddressOf Operators):

Under default definitions, expressions of the forms

&expr

&&expr

are address-of expressions, called byref-address-of expression and nativeptr-
address-of expression respectively. These take the address of a mu-
table local variable, byref-valued argument, field, array element of
static mutable global variable.

For &expr and &&expr, the initial type of the overall expression must
be of the form byref<ty> and nativeptr<ty> respectively, and the ex-
pression expr is checked with initial type ty. The overall expres-
sion is elaborated recursively by taking the address of the elaborated
form of expr, written AddressOf(expr, DefinitelyMutates), defined
in §6.10.3. Note: Use of these operators may result in unverifiable
or invalid CIL code , and a warning or error will typically be given
if this is possible. . . . Addresses generated by the && operator must
not be passed to functions that are in tailcall position. This is not
checked by the F# compiler. . . .

Note: The rules in this section apply to uses of the prefix operators

Microsoft.FSharp.Core.LanguagePrimitives.IntrinsicOperators.(~&)

Microsoft.FSharp.Core.LanguagePrimitives.IntrinsicOperators.(~&&)

defined in the F# core library when applied to one argument. Other
uses of these operators are not permitted.

References

[1] The F# 2.0 Language Specification (April 2010). http://research.

microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.

html.

[2] Microsoft Corporation. C# version 3.0 language specification, 2007. http:

//msdn.microsoft.com/en-us/vcsharp/aa336809.aspx.

18

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html
http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx
http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx

Listing 2: Sec. 4

.method private hidebysig static void NullablesSample() cil managed

{

/*- rather than displaying the csc generated temp locals CS$0$0000, CS$0$0001, and CS$0$0002

we use C0, C1, C2 instead. */

// Code size 84 (0x54)

.maxstack 3

.locals init ([0] valuetype [mscorlib]System.Nullable‘1<int32> ni1,

[1] valuetype [mscorlib]System.Nullable‘1<int32> ni2,

[2] int32 nres,

[3] valuetype [mscorlib]System.Nullable‘1<int32> C0,

[4] valuetype [mscorlib]System.Nullable‘1<int32> C1,

[5] valuetype [mscorlib]System.Nullable‘1<int32> C2)

IL_0000: nop

IL_0001: ldloca.s ni1

IL_0003: initobj valuetype [mscorlib]System.Nullable‘1<int32>

IL_0009: ldloca.s ni2

IL_000b: ldc.i4.s 10

IL_000d: call instance void valuetype [mscorlib]System.Nullable‘1<int32>::.ctor(!0)

IL_0012: nop

IL_0013: ldloc.0

IL_0014: stloc.3

IL_0015: ldloc.1

IL_0016: stloc.s C1

IL_0018: ldloca.s C0

IL_001a: call instance bool valuetype [mscorlib]System.Nullable‘1<int32>::get_HasValue()

IL_001f: ldloca.s C1

IL_0021: call instance bool valuetype [mscorlib]System.Nullable‘1<int32>::get_HasValue()

IL_0026: and

IL_0027: brtrue.s IL_0035

IL_0029: ldloca.s C2

IL_002b: initobj valuetype [mscorlib]System.Nullable‘1<int32>

IL_0031: ldloc.s C2

IL_0033: br.s IL_0049

IL_0035: ldloca.s C0

IL_0037: call instance !0 valuetype [mscorlib]System.Nullable‘1<int32>::GetValueOrDefault()

IL_003c: ldloca.s C1

IL_003e: call instance !0 valuetype [mscorlib]System.Nullable‘1<int32>::GetValueOrDefault()

IL_0043: add

IL_0044: newobj instance void valuetype [mscorlib]System.Nullable‘1<int32>::.ctor(!0)

IL_0049: stloc.s C2

IL_004b: ldloca.s C2

IL_004d: call instance !0 valuetype [mscorlib]System.Nullable‘1<int32>::get_Value()

IL_0052: stloc.2

IL_0053: ret

} // end of method XDemo::NullablesSample

19

	Inserting safe castclass to keep peverify happy
	Example
	How peverify merges types
	A first attempt
	Custom type-merge functions while reusing the typeflow framework
	Similar (identical?) problem: computing stack-map frames for jvm6
	Another prototype
	TODO

	Overflow checking and the CIL for that
	The div special case

	Unsigned integrals and Scala.NET
	Background on CLR unsigned integrals
	int[] is uint[] in C# (syntax lumps together casts and coercions)

	What makes Nullable<T>s (slightly) different from other valuetypes
	Initialization and assignment
	No boxing, no unboxing, but is it monadic style? Really?
	How compilers special-cases Nullable (a bad thing)
	F#
	C#
	CLR

	Sidenotes
	FYI: Unsigned integrals in other .NET languages
	FYI: AddressOf and byref<ty> in F#

