
CIL Metadata as Scala source, and other projects

for the Scala.NET ecosystem

c© Miguel Garcia, LAMP,

École Polytechnique Fédérale de Lausanne (EPFL)
http://lamp.epfl.ch/~magarcia

May 18th, 2010

Contents

1 Interpreting C# extension methods as defining Scala views 1
1.1 Metadata-level representation of extension methods 2
1.2 Declaring implitics to achieve equivalent semantics 3
1.3 Emitting call sites for the original encoding 3

2 Using JVM-based Scala IDEs to develop Scala.NET apps 3
2.1 Obtaining .scala stubs from .dlls and .exes 5
2.2 Conventions followed by the C# compiler to encode syntax sugar into

metadata . 5
2.3 Printing the typing environment . 5

3 Refinement types can handle C# anonymous types (LINQ scenario) 5

4 Emitting CIL for Serialization, Cloning, and Remoting 7

5 Default values for fields in CLR (“Object initialization semantics”) 8

6 Other projects for the Scala.NET ecosystem 8

Abstract

Besides adding support for Generics, other extensions and additions
to the Scala.NET compiler would also increase its value for the commu-
nity. These notes describe some of these projects, in a format suitable for
compiler hackers.

1 Interpreting C# extension methods as defin-
ing Scala views

In terms of surface syntax, a C# extension method can be invoked as any other
method, although its declaration is not part of the receiver’s type (similar to
Scala implicits, extension methods are resolved based on the static type of the re-
ceiver). In terms of its metadata encoding, an extension method M is declared in
a static class, where the first argument of M encodes a [System.Runtime.CompilerServices.Extension]

attribute on its type. This marker attribute instructs .NET compilers to handle

1

http://lamp.epfl.ch/~magarcia

that method argument as future receiver of M. The C# surface syntax prefixes
this argument with the this keyword.

In this subsection, we explore how to make a C# extension method behave as
a Scala implicit within the compiler boundaries i.e., from the time its metadata
encoding is parsed till an assembly is emitted. The emitted code has to follow
the original calling convention (i.e., a static method invocation is to be emitted).

1.1 Metadata-level representation of extension methods

As reported at The metadata of extension methods fulfills the following condi-
tions:1,

static IEnumerable<MethodInfo> GetExtensionMethods(Assembly assembly, Type extendedType)

{

var query = from type in assembly.GetTypes()

where type.IsSealed && !type.IsGenericType && !type.IsNested

from method in type.GetMethods(BindingFlags.Static

| BindingFlags.Public | BindingFlags.NonPublic)

where method.IsDefined(typeof(ExtensionAttribute), false)

where method.GetParameters()[0].ParameterType == extendedType

select method;

return query;

}

BTW, trying to “manually encode” the metadata above will not work, as
the example in p. 14 of LINQ Esstentials2 shows:

[System.Runtime.CompilerServices.Extension]

public static int CompareTo(string origStr, string compareStr)

{ . . .

/* Triggers the error message

Do not use System.Runtime.CompilerServices.ExtensionAttribute. Use the this keyword instead.

*/

}

As an illustration of the metadata encoding, Figure 1 shows the metadata
of SQO extension methods obtained from disassembling System.Core.dll. For
example, one of the overloadings of Average is:

.method public hidebysig static float64 Average<TSource>(/*- static method in static class */

class [mscorlib]System.Collections.Generic.IEnumerable‘1<!!TSource> source, /*- receiver */

class System.Func‘2<!!TSource,float64> selector

) cil managed

{

.custom instance void /*- marker attribute */

System.Runtime.CompilerServices.ExtensionAttribute::.ctor() = (01 00 00 00)

// Code size 13 (0xd)

.maxstack 8

IL_0000: ldarg.0

IL_0001: ldarg.1

IL_0002: call class [mscorlib]System.Collections.Generic.IEnumerable‘1<!!1>

System.Linq.Enumerable::Select<!!0,float64>(

class [mscorlib]System.Collections.Generic.IEnumerable‘1<!!0>,

class System.Func‘2<!!0,!!1>

1http://stackoverflow.com/questions/299515/c-reflection-to-identify-extension-methods
2http://www.mhprofessional.com/downloads/products/0071597832/0071597832_

chap01.pdf

2

http://stackoverflow.com/questions/299515/c-reflection-to-identify-extension-methods
http://www.mhprofessional.com/downloads/products/0071597832/0071597832_chap01.pdf
http://www.mhprofessional.com/downloads/products/0071597832/0071597832_chap01.pdf

)

IL_0007: call float64 System.Linq.Enumerable::Average(

class [mscorlib]System.Collections.Generic.IEnumerable‘1<float64>

)

IL_000c: ret

} // end of method Enumerable::Average

1.2 Declaring implitics to achieve equivalent semantics

TODO Take into account the idioms proposed at http:

//scala-programming-language.1934581.n4.nabble.com/

scala-Class-overloading-vs-implicit-conversion-td1997797.html

Refresher: From Predef.scala:

// views --

implicit def intWrapper(x: Int) = new runtime.RichInt(x)

Given a C# extension method:

class C {

public static retType M(this TargetType target, arg1Type arg1, ...) { ... }

}

Symbols should be entered as if the following two classes had been defined:

class C {

implicit def C2RichC(target : TargetType) = new RichC(target)

}

class RichC(target : TargetType) { // target is now in scope

def M(arg1 : arg1Type, ...) {

// method body copied verbatim from original C# definition

}

}

1.3 Emitting call sites for the original encoding

TODO During (or right after?) GenICode, trees where RichC methods are
invoked have to be desugared into invocations on static methods of C

2 Using JVM-based Scala IDEs to develop Scala.NET
apps

Right now, the development of .NET applications lacks IDE support. Before a
VisualStudio plugin for Scala becomes available, an interim solution is explored
in this section, relying on the JVM-based IDEs for Scala in use today.

When developing for .NET, the compiler has to discover3 types in a bunch of
assemblies. Is there a way to represent those .NET types in a format consumable
by current IDEs supporting Scala? If so, then the IDE in question could be used

3Decoding external types on JVM and CLRhttp://www.sts.tu-harburg.de/people/mi.

garcia/ScalaCompilerCorner/TypeDecoding.pdf

3

http://scala-programming-language.1934581.n4.nabble.com/scala-Class-overloading-vs-implicit-conversion-td1997797.html
http://scala-programming-language.1934581.n4.nabble.com/scala-Class-overloading-vs-implicit-conversion-td1997797.html
http://scala-programming-language.1934581.n4.nabble.com/scala-Class-overloading-vs-implicit-conversion-td1997797.html
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/TypeDecoding.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/TypeDecoding.pdf

Figure 1: Metadata of SQO extension methods

to develop Scala.Net apps (with all navigation and editing goodies running on
the JVM-based IDE, but offloading the compilation to the Scala.Net compiler).

The premiere “consumable representations of external types” are Scala sources
themselves, containing type definitions with method bodies that just return de-
fault values, i.e., stubs. These stubs are generated from the referenced assemblies
in a manner similar to how .NET Reflector does its thing. If C#’s surface syn-
tax can express those types, even more so Scala’s: all capabilities of the CLR
type system are supported by Scala’s type system (and then some). Granted,
a convention is needed to represent in Scala sources the “calling convention” of
events and properties (same as under the hood of the C# compiler4) but this
does not compromise type safety. Additionally, the generation of stubs need be
performed only upon recompilation of the referenced assemblies, i.e. not that
often.

Assuming this option has been made to work, one issue remains: the Scala
IDE should be instructed not to automatically import the types in rt.jar (in
particular java.lang.*) but instead those in the System.bla.bla stubs avail-
able in the Scala sources obtained by “CIL Metadata as Scala sources”.

Although IDE-based editing and navigation would be convenient, no IDE-
based support would be available for cross-compiling nor debugging. For de-
bugging, one would have to take the pdb file (which includes source locations,
generated by Scala.Net) and the .scala files to an IDE for Mono or .NET to
debug there.

4http://www.mhprofessional.com/downloads/products/0071597832/0071597832_

chap01.pdf

4

http://www.mhprofessional.com/downloads/products/0071597832/0071597832_chap01.pdf
http://www.mhprofessional.com/downloads/products/0071597832/0071597832_chap01.pdf

2.1 Obtaining .scala stubs from .dlls and .exes

BTW, a similar functionality is called “Metadata as Source”5 in C#

Metadata as source enables you to view metadata that appears as
C# source code in a read-only buffer. This enables a view of the
declarations of the types and members (with no implementations).
You can view metadata as source by running the Go To Definition
command for types or members whose source code is not available
from your project or solution.

TODO What API to call to obtain the C# snippets in question?

TODO Using compiler.msil.TypeParser to parse the metadata

• TODO: add URL to write-up Parsing metadata for Generics, Round 2

• Parsing type-metadata about Generics on .NET 6

2.2 Conventions followed by the C# compiler to encode
syntax sugar into metadata

In addition to the discussions in Sec. 1 (Extensions Methods), the following
resources are useful:

• http://connect.microsoft.com/VisualStudio/feedback/details/293271/

c-compiler-does-not-emit-specialname-metadata-for-getter-setter-methods-used-to-wrap-non-virtual-properties-on-base-class-es-used-to-satisfy-interface-contracts

• http://www.mhprofessional.com/downloads/products/0071597832/0071597832_

chap01.pdf

2.3 Printing the typing environment

Listing 1 shows a utility (a compiler patch, actually) to print (after the typing
phase) not the compilation units, but the contents of the assemblies given by
-Xassem-extdirs (this utility can be extended to print them out as stubs).

Listing 1 is reproduced from http://permalink.gmane.org/gmane.comp.

lang.scala.internals/3164.

3 Refinement types can handle C# anonymous
types (LINQ scenario)

In Scala, it is possible to declare structural types using type refinements (§3.2.7),
including a shorthand form for creating values of structural types. For instance,

new { def getName() = "aaron" }

is a shorthand for

new AnyRef { def getName() = "aaron" }

5http://msdn.microsoft.com/en-us/library/ms236403(VS.80).aspx
6http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/ScalaNetRound2.pdf

5

http://connect.microsoft.com/VisualStudio/feedback/details/293271/c-compiler-does-not-emit-specialname-metadata-for-getter-setter-methods-used-to-wrap-non-virtual-properties-on-base-class-es-used-to-satisfy-interface-contracts
http://connect.microsoft.com/VisualStudio/feedback/details/293271/c-compiler-does-not-emit-specialname-metadata-for-getter-setter-methods-used-to-wrap-non-virtual-properties-on-base-class-es-used-to-satisfy-interface-contracts
http://www.mhprofessional.com/downloads/products/0071597832/0071597832_chap01.pdf
http://www.mhprofessional.com/downloads/products/0071597832/0071597832_chap01.pdf
http://permalink.gmane.org/gmane.comp.lang.scala.internals/3164
http://permalink.gmane.org/gmane.comp.lang.scala.internals/3164
http://msdn.microsoft.com/en-us/library/ms236403(VS.80).aspx
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/ScalaNetRound2.pdf

Listing 1: Printing the typing environment

class SymbolPrinter(out: PrintWriter) extends treePrinters.Printer(out) {

def printClass(sym: Symbol) {

print(sym.toString)

if (!sym.info.typeParams.isEmpty)

printRow[Symbol](sym.info.typeParams, printTypeParam, "[", ", ", "]")

print(" extends ")

printRow[Type](sym.info.parents, (t => print(t.toString)), "", " with ", "")

printColumn(sym.info.decls.toList, printMember, "{", "", "}\n")

flush

}

def printTypeParam(sym: Symbol) {

print(sym.name); print(sym.info.bounds.toString)

}

def printMember(sym: Symbol) {

if (sym.isClass) printClass(sym)

else print(sym.defString)

}

}

Regarding anonymous types7 and the role they play in LINQ queries [1],
a Scala formulation that preserves their semantics yet does not require AST
rewriting is . . . refinement types, of course!

val lst = List("a", "b", "c")

val res = lst map (arg => new { val bb = arg.length }) map (arg2 => arg2.bb + 1)

In the example above, “new { val bb = arg.length }” is an occurrence of
refinement types (§3.2.7 in the Scala 2.8 spec) and captures the semantics of the
C# version: an anonymous type inherits implicitly from System.Object.

TODO reformulate the snippet above in C#, compile, decompile with ILAsm,
and see what the base class of the (synthetic, compiler-generated) anonymous
type is.

Well, in fact, there’s more to it than the example above might suggest. But
not too much. Another example of anonymous types in C# is:

var query = from c in listOfCustomers

select new {FirstName = c.Name, c.City};

Notice the “c.City” instead of “City = c.City”? We’ll, a LINQ expander
could take care to expand that shorthand.

Now, do we really want to follow verbatim the C# syntax? The issue at
play is whether (a) we let the Scala.NET compiler accept the C# syntax for
anonymous types; or (b) keep consistency with Scala refinement types. We
choose (b), obviously.

LINQ Expression Trees in the context of Scala.NET are discussed in the
write-up Adding LINQ-awareness to Scala.Net at http://www.sts.tu-harburg.
de/people/mi.garcia/ScalaCompilerCorner/ScalaNetLearnsLINQTricks.pdf.

7http://blogs.msdn.com/wesdyer/archive/2006/12/22/transparent-identifiers.aspx

6

http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/ScalaNetLearnsLINQTricks.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/ScalaNetLearnsLINQTricks.pdf
http://blogs.msdn.com/wesdyer/archive/2006/12/22/transparent-identifiers.aspx

4 Emitting CIL for Serialization, Cloning, and
Remoting

In general, the .NET framework relies more on attributes than marker interfaces,
for example with the class-level [Serializable] and the field-level [NonSerialized]
rather than implements java.io.Serializable. As a reminder, serialization,
cloning, and remoting appear at the level of IClasses as Scala annotations:

for (annot <- c.symbol.annotations) annot match {

case AnnotationInfo(tp, _, _) if tp.typeSymbol == SerializableAttr =>

parents = parents ::: List(definitions.SerializableClass.tpe)

case AnnotationInfo(tp, _, _) if tp.typeSymbol == CloneableAttr =>

parents = parents ::: List(CloneableClass.tpe)

case AnnotationInfo(tp, Literal(const) :: _, _) if tp.typeSymbol == SerialVersionUID =>

serialVUID = Some(const.longValue)

case AnnotationInfo(tp, _, _) if tp.typeSymbol == RemoteAttr =>

parents = parents ::: List(RemoteInterface.tpe)

remoteClass = true

case _ => ()

}

Serialization

• Ins and Outs, http://msdn.microsoft.com/en-us/library/7ay27kt9(VS.
80).aspx

• Common cases, http://www.codeguru.com/csharp/csharp/cs_syntax/
serialization/article.php/c7201

Cloning. Quoting from http://weblogs.asp.net/esanchez/archive/2008/

05/18/cloning-objects-in-net.aspx

Perhaps surprisingly the CLR doesn’t offer a general cloning method,
of course you could use MemberwiseClone() but this is a protected
method, so it can be invoked only from inside the class of the object
being cloned, which makes it difficult to use it in a general method,
besides, MemberWiseClone() does just a shallow copy and what we
really need is a deep copy.

• Brad Abrams: Do not implement ICloneable.
http://blogs.msdn.com/brada/archive/2003/04/09/49935.aspx

• http://msdn.microsoft.com/en-us/library/system.icloneable.aspx

Remoting

• From .NET Remoting to the Windows Communication Foundation (WCF),
http://msdn.microsoft.com/en-us/library/aa730857(VS.80).aspx

TODO What methods and fields are currently being generated in GenMSIL for
each of the above concerns? Are the respective design patterns complete or is
sthg missing?

7

http://msdn.microsoft.com/en-us/library/7ay27kt9(VS.80).aspx
http://msdn.microsoft.com/en-us/library/7ay27kt9(VS.80).aspx
http://www.codeguru.com/csharp/csharp/cs_syntax/serialization/article.php/c7201
http://www.codeguru.com/csharp/csharp/cs_syntax/serialization/article.php/c7201
http://weblogs.asp.net/esanchez/archive/2008/05/18/cloning-objects-in-net.aspx
http://weblogs.asp.net/esanchez/archive/2008/05/18/cloning-objects-in-net.aspx
http://blogs.msdn.com/brada/archive/2003/04/09/49935.aspx
http://msdn.microsoft.com/en-us/library/system.icloneable.aspx
http://msdn.microsoft.com/en-us/library/aa730857(VS.80).aspx

5 Default values for fields in CLR (“Object ini-
tialization semantics”)

Quoting from [2]:

Default values reside in the Constant metadata table. Three kinds
of metadata items can have a default value assigned and therefore
can reference the Constant table: fields, method parameters, and
properties. . . . The ILAsm syntax is:

<field_def_const> ::= .field <flags> <type> <name> = <const_type> [(<value>)]

The value in parentheses is mandatory for all constant types except
nullref. . . . Suppose that we define a member field as follows: .field

public static int32 ii = int32(12345) What will the value of the
field be when the class is loaded? Correct answer: 0. Why? Default
values specified in the Constant table are not used by the loader to
initialize the items to which they are assigned. If you want to initial-
ize a field to its default value, you must explicitly call the respective
Reflection method to retrieve the value from metadata and then store
this value in the field.

TODO See §5.1.6 (5.1.6 Early Definitions) in the Scala Language Spec.

Early Member Definitions (draft), http://www.scala-lang.org/sites/default/
files/sids/nielsen/Tue,%202009-06-02,%2013:16/early-defs.pdf

TODO What ICode is generated for early member defs, as e.g.

// phaseName = "tailcalls"

object tailCalls extends {

val global: Global.this.type = Global.this

val runsAfter = List[String]("uncurry")

val runsRightAfter = None

} with TailCalls

6 Other projects for the Scala.NET ecosystem

• Scalify.NET and joint compilation of Scala and C#,
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/

MixedSourceScalaCSharp.pdf

References

[1] Miguel Garcia. Compiler plugins can handle nested languages: AST-
level expansion of LINQ queries for Java. In Moira C. Norris and
Michael Grossniklaus, editors, Proc. of ICOODB 2009, pages 41–58, July
2009. http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/

icoodb/compplugin.pdf.

[2] Serge Lidin. Expert .NET 2.0 IL Assembler. Apress, Berkely, CA, USA,
2006.

8

http://www.scala-lang.org/sites/default/files/sids/nielsen/Tue,%202009-06-02,%2013:16/early-defs.pdf
http://www.scala-lang.org/sites/default/files/sids/nielsen/Tue,%202009-06-02,%2013:16/early-defs.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/MixedSourceScalaCSharp.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/MixedSourceScalaCSharp.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/icoodb/compplugin.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/icoodb/compplugin.pdf

	Interpreting C# extension methods as defining Scala views
	Metadata-level representation of extension methods
	Declaring implitics to achieve equivalent semantics
	Emitting call sites for the original encoding

	Using JVM-based Scala IDEs to develop Scala.NET apps
	Obtaining .scala stubs from .dlls and .exes
	Conventions followed by the C# compiler to encode syntax sugar into metadata
	Printing the typing environment

	Refinement types can handle C# anonymous types (LINQ scenario)
	Emitting CIL for Serialization, Cloning, and Remoting
	Default values for fields in CLR (``Object initialization semantics'')
	Other projects for the Scala.NET ecosystem

