
BioHacker

Nada Amin
MIT

namin@mit.edu

Dan Wheeler
MIT

lowe@mit.edu

Jeremy Zucker
MIT

zucker@broad.mit.edu

1. INTRODUCTION
Despite a plethora of sequenced genomes, a paucity of genome-
scale metabolic models have been published thus far. The
bottleneck comes from the extensive manual effort is cur-
rently required to reconstruct the metabolic network. In
order to be effective, a model of metabolism should be co-

herent, in the sense that the model should obey physico-
chemical constraints, such as charge and mass balance. It
should be complete, in the sense that all genes that code for
metabolic enzymes should be part of the model. Finally, the
model should be consistent with conditional gene essentiality
experiments that measure growth/no-growth under various
different nutrient media and gene knockouts.

Inspired by computer models of skill acquisition[10] and robot
scientists that automate the scientific process[5], we have
developed BIOHACKER as a network debugging tool to detect
incoherence in the network, generate reasonable hypothe-
ses for filling in gaps in incomplete networks, and predict
sufficient nutrient sets that are consistent with conditional
essentiality experiments.

2. NETWORK DEBUGGER
2.1 Overview
The user of the network debugger provides a model of the
network and a set of experiments. For each experiment,
the network debugger assesses whether the experiment is
consistent with the model, explaining why (with a queryable
proof) or why not (with queryable minimal fixes).

2.2 Demonstration
For purpose of demonstration, we will use the small net-
work shown in Figure 1. The user code which specifies this
network model is shown in Listing 1.

The set of experiments in Listing 2 tests our model. In
order to test our system, we purposefully introduced some
inconsistencies in our model with respect to the experiments:

6.945 2008 Cambridge, MA USA

• reaction r1 has its reactants and products swapped.

• reaction r2 has no enzymes catalyzing it.

• reaction r4 shouldn’t actually be part of our model.

r1

r2

r3

r4

a b

c

e

f

g

d

?

x

Figure 1: Example Metabolic Network

Listing 1: Network Model

(network-debugger demo
:debugging t
:abducting t
:rules :extended-reactions)

(reaction r1
:reactants (c g)
:products (a b)
:enzymes (e1))

(reaction r2
:reactants (b c)
:products (d))

(reaction r3
:reactants (d g)
:products (e)
:enzymes (e3))

(reaction r4

: reactants (b f)
: products (e)
:enzymes (e4))

(enzyme e1 g1)
(enzyme e3 g3 g3p)
(enzyme e4 g4)

Listing 2: Experiments

(experiment
positive
(a b d)
:growth ? t
: essential-compounds (a e))

(experiment
negative
(a)
:growth ? nil
: essential-compounds (a e))

(experiment
false-positive
(a b f)
:growth ? nil
: essential-compounds (a e)
:knock-outs (g1))

(experiment
false-negative
(a b)
:growth ? t
: essential-compounds (a e))

We immediately get the following feedback when loading the
set of experiments:

• Experiments positive and negative are consistent with
the model.

• Experiment false-positive is not consistent with the
model. Needs:

– ((NOT (GENE-ON G4)))

• Experiment false-negative is not consistent with the
model. Needs:

– ((NUTRIENT E))

– ((NUTRIENT D))

– ((REACTION-ENABLED R2))

– ((NUTRIENT F))

Notice that the network debugger suggested enabling reac-

tion r2 and disabling reaction r4 to fix our model.

Once an experiment is consistent with the model, the net-
work debugger can explain why by providing a proof and
allowing the user to query this proof. For example, after
loading the experiment positive, the user can type (explain

’experiment-consistent) to get a proof in the syle of Sup-
pes [9]. The user can query the facts that play a role in the
proof using all-antecedents. For example, (all-antecedents

’experiment-consistent ’((reaction-enabled ?r) (reaction-

reversible ?r))) returns ((REACTION-ENABLED R3) (REACTION-

ENABLED R1) (REACTION-REVERSIBLE R1)). As a shortcut, it is
possible to list reactions that had to explicitly be assumed
reversible for the proof: (explicit-reversibility) returns
(R1). Similarly, (explicit-gene-expression) returns which
genes had to explicitly be assumed on for the proof.

2.3 Specification
We describe the user language to define the network model
and experiments.

The network model consists of definitions of pathways, re-
actions, and enzymes.

An enzyme is defined by (enzyme <name> . <list of genes

(conjunctive)>. The list of genes may contain :UNKNOWN to
indicate that the enzyme has some unknown gene contribut-
ing to its formation.

A pathway or reaction is defined by (pathway/reaction <name>

...) where ... can contain any of the following keys:

:reactants <list of reactants>

:products <list of products>

:reversible? <t / nil / :UNKNOWN> (By default, :UN-
KNOWN for reactions and nil for pathways.)

:enzymes <list of enzymes (disjunctive for reactions, un-
specified logic for pathways)> Note that

• nil for a reaction means that NO enzymes catalyze
it, i.e. the reaction will never be fired but might
play a role in abduction.

• :SPONTANEOUS, instead of a list, means that
no enzymes are needed.

• (:UNKNOWN) means that some unknown enzyme
is needed. :UNKNOWN can be part of any en-
zyme list.

:reactions <list of all reactions in the pathway> (pathways
only)

:proper-products <list of the actual end products of a
pathway> (pathways only) (This list should be a sub-
set of products, and is the same as products by de-
fault.)

An experiment is defined by (experiment <name> <nutrient-

list> :growth? <T or nil> :essential-compounds <list of com-

pounds that must be produecd in order to achieve growth (con-

junctive)> ...) where ... can contain any of the following:

knock-outs <list of genes asserted to be off>

knock-ins <list of genes asserted to be on>

toxins <list of compounds that if produced cause no-growth
experimental outcomes (disjunctive)>

bootstrap-compounds <list of compounds that are as-
serted to exist, but not nutrients>

2.4 Implementation
We implemented the network debugger on top of a logic-
based truth maintenance system (LTMS) [2]. Figure 2 gives
an overview of the system.

translator

assumptions

premises

ltms / ltre

queries

domain data
(declarative language)

domain rules
(declarative logic)

domain patterns
(declarative search)

Figure 2: Overview of the Network Debugger Sys-

tem

Crucially, all our domain-specific knowledge is specified declar-
atively. The domain data is given by the user, in the domain-
specific language outlined in 2.3. The domain rules are spec-
ified using the rule system of the LTMS engine. Finally, we
augmented the the query facility of the LTMS. The query
facility is still general. We apply it to our domain by re-
stricting the queries with patterns.

2.4.1 Domain Data
Using a straightforward set of macros, we translate the do-
main data into assumptions and premises of our LTMS. For
example, the macros for enzyme and experiment are shown in
Listing 3 and Listing 4. The network open / closed distinc-
tion is explained in 2.4.2.

Listing 3: Enzyme Macro

(defmacro enzyme (name &rest genes)
‘(ensure-network-open enzyme

(assert ! ’(enzyme ,name ,@genes)
:NETWORK)

(debugging-nd
"~% Adding enzyme ~A." ’,name)))

Listing 4: Experiment Macro

(defmacro experiment (name
nutrients
&key
growth ?
(knock-outs nil)
(knock-ins nil)
(toxins nil)
(bootstrap-compounds nil)
essential-compounds)

‘(ensure-network-closed
experiment
(assert ! ’(experiment

,name ,growth ?
,nutrients ,essential-compounds
,bootstrap-compounds ,toxins
,knock-ins ,knock-outs)

:EXPERIMENTS)

(debugging-or-logging-nd
"~% Adding experiment ~A" ’,name)

(run-rules-logging)
(investigate-experiment ’,name)))

2.4.2 Domain Rules
The domain rules describe how to derive more facts from the
premises and assumptions. We can easily change the domain
rules independently of the rest of the system. For example,
we have different sets of rules, depending on whether the
network debugger operates on pathways or reactions.

Listing 5 shows an excerpt of the domain rules. It simply
expresses the logic that if a reaction is enabled and all the
reactants are present, then the reaction is fired and all the
products are present.

Listing 5: Excerpt of Domain Rules

(rule ((: INTERN (reaction
?reaction
?reactants ?products
?reversible ? ?enzymes)))

...
(assert !
‘(: IMPLIES

(: AND (reaction-enabled ,?reaction)
,@(list-of ’compound-present ?reactants))

(:AND (reaction-fired ,?reaction)
,@(list-of ’compound-present ?products)))

:REACTION-FIRED)
...

)

In addition to deriving positive facts, e.g. a certain com-
pound is present, we would like to be able to derive negative
facts, e.g. a certain compound is not present. However, in
order to derive that a compound is not present, we need to
assume that the network is closed, i.e. that no additional re-
actions are going to be declared. Listing 6 shows the domain
rule that makes use of the network-closed premise.

Listing 6: Domain rule for deriving absence of com-

pound

(rule ((: TRUE network-closed))
(rule ((: INTERN (compound ?compound)))

(let*
((product-facts

(fetch ‘(product ,?compound ?reaction)))
(reactant-facts
(fetch ‘(reactant ,?compound ?reaction)))

(reaction-fired-facts
(mapcar
#’(lambda (fact)

‘(reaction-fired ,(caddr fact)))
product-facts))

(reverse-reaction-fired-facts
(mapcar
#’(lambda (fact)

‘(reverse-reaction-fired ,(caddr fact)))
reactant-facts)))

(assert !
‘(: IMPLIES

(: AND
(:NOT (nutrient ,?compound))
(:NOT
(:OR

,@reaction-fired-facts
,@reverse-reaction-fired-facts)))

(:NOT (compound-present ,?compound)))
: NETWORK-CLOSED))))

2.4.3 Queries
We extended the LTMS query facility with two procedures:
needs and all-antecedents.

all-antecedents is straightforward. It simply makes a list
of all facts that support a fact or recursively support any
antecedent of that fact.

needs allows our system to perform abduction. It answers
the question: which unknown facts, if true, would be suffi-
cient for a given unknown fact to become true?

Both these procedures take an optional list of patterns, which
limits the form of facts that can be returned.

3. RESULTS
To test the ability of the NETWORK DEBUGGER to debug real
data, we exported the EcoCyc[4][8] representation of the E.

coli metabolic network into the NETWORK DEBUGGER domain
data format, generating 929 reactions, 836 enzymes, and
251 pathway premises.

To ensure that our model would grow on at least one nutrient
media, we generated an in silico rich medium set by taking
the union of all proper reactants of each pathway in the
model, as shown in Listing 7

Listing 7: E. coli rich media

(defun make-rich-media (pwy-list filter-p)
‘(experiment

growth
(nutrients
,@(remove-duplicates

(loop for pwy in pwy-list
when (funcall filter-p pwy)
append (multiple-value-bind

(all-reactants
proper-reactants
all-products
proper-products)

(substrates-of-pathway pwy)
proper-reactants)))) (OFF)))

We then selected as our essential compounds the full set of
amino acids, nucleic acids, cytoplasmic membrane compo-
nents, outer membrane components, and cell wall compo-
nents as shown in Listing 8

Listing 8: E. coli essential compounds

(setq *amino-acids *
’(L-ALPHA-ALANINE ARG ASN L-ASPARTATE CYS GLN

GLT GLY HIS ILE LEU LYS MET PHE PRO SER THR
TRP TYR VAL))

(setq *dna-and-rna *
’(DATP TTP DGTP DCTP ATP UTP GTP CTP))

(setq *cytoplasmic-membrane *

’(L-1-PHOSPHATIDYL-ETHANOLAMINE CARDIOLIPIN
L-1-PHOSPHATIDYL-GLYCEROL))

(setq *outer-membrane* ’(C6))
(setq *cell-wall *

’(BISOHMYR-GLC ADP-L-GLYCERO-D-MANNO-HEPTOSE
KDO UDP-GLUCOSE UDP-GALACTOSE DTDP-RHAMNOSE
GDP-MANNOSE N-ACETYL-D-GLUCOSAMINE))

Surprisingly, even with this rich media, we were still unable
to produce compound C6 (lipid intermediate II)

By manual checking, we discovered that the reason for this is
that an upstream reaction, UDPNACETYLMURAMATEDEHYDROG-
RXN , in the Peptidoglycan biosynthesis pathway was re-
versed, making the entire chain of downstream metabolites
unproduceable.

Once this bug was discovered, we added a new rule to our
set of strategies so that if a metabolite is unproducable, the
system tries to reverse reactions with unknown reversibilities
to see if that will solve the problem.

Interestingly, it has been shown that for many metabolic
reconstructions, that ”the dominant flow restoration mech-
anism is directionality reversals of existing reactions in the
respective models”[6]

Once we debugged this problem, we wished to reduce the
rich medium to a nutrient set that was still capable of pro-
ducing growth. By querying the explain mechanism of the
underlying TMS, we were able to make the following suffi-
cient nutrient set prediciton as shown in Listing 9.

Listing 9: E. coli predicted sufficient nutrient set

(GLN ASN THR LEU VAL ILE TRP PHE TYR CYS MET
LYS GLY ARG HIS PRO UDP-GALACTOSE
UDP-GLUCOSE RIBULOSE-5P
ADP-L-GLYCERO-D-MANNO-HEPTOSE GLC-1-P
TTP FRUCTOSE-6P 3- OHMYRISTOYL-ACP GLT
NADPH PHOSPHO-ENOL-PYRUVATE
MESO-DIAMINOPIMELATE L-ALPHA-ALANINE
D-ALANINE UDP-N-ACETYL-D-GLUCOSAMINE
UNDECAPRENYL-P GTP GLYCEROL-3P SER
CDPDIACYLGLYCEROL METHYLENE-THF UTP
CTP UDP |Red-Glutaredoxins|
| Red-Thioredoxin| | Reduced-flavodoxins|
CDP ATP WATER
DIACETYLCHITOBIOSE-6-PHOSPHATE)

This sufficient nutrient set allowed us to focus on reactions
and pathways that could produce these compounds start-
ing with experimentally determined nutrient sets, such as
Middlebrook growth medium L9, as described in [3].

Finally, we then converted 13750 conditional gene essential-
ity experiments performed by Covert et al[1] and for each
condition, we recorded whether the E. coli model’s predic-
tions of growth were consistent or inconsistent with the ex-
perimental results. as shown in Listing 10.

Listing 10: E. coli conditional essentiality experi-

ments

(experiment in_vivo_EG11074_ala-D_nh4
(CARBON-DIOXIDE PROTON WATER

AMMONIUM
SULFATE
D-ALANINE |Pi|
OXYGEN-MOLECULE)

:growth ? T
:essential-compounds
(L-ALPHA-ALANINE ARG ASN L-ASPARTATE CYS

GLN GLT GLY HIS ILE LEU LYS MET PHE PRO
SER THR TRP TYR VAL DATP TTP DGTP DCTP
ATP UTP GTP CTP
L-1-PHOSPHATIDYL-ETHANOLAMINE CARDIOLIPIN
L-1-PHOSPHATIDYL-GLYCEROL C6 BISOHMYR-GLC
ADP-L-GLYCERO-D-MANNO-HEPTOSE KDO
UDP-GLUCOSE UDP-GALACTOSE DTDP-RHAMNOSE
GDP-MANNOSE N-ACETYL-D-GLUCOSAMINE)

:knock-outs (EG11074)
:knock-ins Nil
:toxins Nil
:bootstrap-compounds Nil)

We found that most of the model predictions were false nega-
tives due to the existence of uninstantiated generic reactions.
Inspired by the symbolic computational approach to infer
novel biochemical knowledge described in [7], we decided to
implement the METABOLIZER portion of our project.

4. METABOLIZER
Consider alcohol dehydrogenase, whereby an -OH group,
connected to a chemical substructure R of arbitrary com-
plexity, loses its Hydrogen and becomes an =O group. The
first line of the database shows how this general reaction is
currently stored in the pathway tools database:

The second line is the same reaction at a structural level. An
instance of this general reaction – ethanol -> acetaldehyde
– is shown on the third and fourth lines.

Clearly, to be able to recognize the pattern/instance re-
lationship between these two reactions, knowledge of the
chemicals’ structural representations is necessary; there is
no deducible relationship between the atomic symbols ’alco-
hol and ’ethanol. In our current approach we therefore have
no means of representing this general-level chemical knowl-
edge. Our database is often bloated with repetitive instances
of a small set of patterns. Worse, it is incomplete: in the
case of alcohol dehydrogenase, for example, there is no way
that the database has populated a corresponding aldehyde
for every single chemical entry that has an -OH group.

An extension to our project, one that we made a minor
dent on, would be to move our database from a reaction-
of-names to a reaction-of-structures representation. Such a

move would naturally allow such generic chemical knowledge
to be encoded. The idea is to create a dynamic database
that expands as reactions are explored throughout a search,
through the application of appropriate generic reactions to
the current chemicals at hand. The generic reactions, ap-
plied to specific reactants, produce specific products that
can be added to the database.

The set-up we propose is to use graph pattern matching
to figure out when a generic reaction applies, and to use
graph rewriting to derive the products that result. Two
procedures, MATCH and REWRITE, would provide this
behavior.

We started attempting to write MATCH using combinator-
style syntactic pattern matching. We chose to represent
chemical structure graphs using adjacency lists. CO2, for
example, looks like:

((C (2 2) (3 2)) (O (1 2)) (O (1 2)))

Where the C has index 1, and the Os have index 2 and 3 re-
spectively. The C entry indicates that it is bonded to atom
2, that it is a double-bond, and likewise for atom 3. The
remaining entries redundantly reflect the same connectiv-
ity. We thought about using canonicalization – alphabetical
atom ordering, with increasing-index order for the bond lists
of each entry. Unfortunately, a single chemical can still have
several different adjacency lists under this canonicalization
(for example C=0=C=0=C), so syntactic pattern matching
would require combinatorially many patterns to work cor-
rectly.

It turns out several hours in the lab saved us 30 minutes in
the library. Looking through Pathway Tools, we found an
ancient subgraph matcher that could do precisely what we
wanted. It works by aligning two atoms in the two input
patterns, seeing if their bonds are consistent, and recursing
on the atoms at the end of each bond, backtracking when
necessary. We wrote a quick wrapper to provide the interface
we desired and to hide hairiness of the underlying code.

The next step, one we may pursue in the future, is the
REWRITE procedure. The design we had in mind is as
follows:

In addition to the specific reactants, we have two pieces of
information to work with as input to REWRITE: our generic
reaction, represented as an atom mapping from generic re-
actants to generic products, and our MATCH to the specific
reactants, also represented as a mapping. The REWRITE

procedure would then combine these two mappings to figure
out how to rewrite the specific reactants into specific prod-
ucts. We may be better served thinking about how to create
a better language for describing the mappings, rather than
using atom number mappings. We haven’t yet attempted
an implementation.

5. CONCLUSION
By representing our domain knowledge declaratively, the un-
derlying Truth Maintenance System can effectively reason
about the behavior of the metabolic network. Furthermore,
as additional knowledge about how to debug metabolic net-
works is gained, we expect that only small changes in the
code will be necessary to accommodate those changes. We
plan to continue developing this system with the eventual
goal of releasing the software to the Pathway-tools commu-
nity to aid in the rapid reconstruction of metabolic networks.

6. AVAILABILITY
BIOHACKER is released under the GNU General Public Li-
cense v3. The latest source code can be found in the SVN
repository at http://biohacker.googlecode.com.

7. REFERENCES
[1] M. W. Covert, E. M. Knight, J. L. Reed, M. J.

Herrgard, and B. O. Palsson. Integrating
high-throughput and computational data elucidates
bacterial networks. Nature, 429(6987):92–96, May
2004.

[2] K. D. Forbus and J. D. Kleer. Building Problem

Solvers. MIT Press, Cambridge, MA, USA, 1993.

[3] A. R. Joyce, J. L. Reed, A. White, R. Edwards,
A. Osterman, T. Baba, H. Mori, S. A. Lesely, B. O.
Palsson, and S. Agarwalla. Experimental and
computational assessment of conditionally essential
genes in escherichia coli. J. Bacteriol.,
188(23):8259–8271, December 2006.

[4] I. M. Keseler, J. Collado-Vides, S. Gama-Castro,
J. Ingraham, S. Paley, I. T. Paulsen, M. Peralta-Gil,
and P. D. Karp. Ecocyc: a comprehensive database
resource for escherichia coli. Nucleic Acids Res,
33(Database issue), January 2005.

[5] R. D. King, K. E. Whelan, F. M. Jones, P. G. Reiser,
C. H. Bryant, S. H. Muggleton, D. B. Kell, and S. G.
Oliver. Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature,
427(6971):247–252, January 2004.

[6] V. S. Kumar, M. S. Dasika, and C. D. Maranas.
Optimization based automated curation of metabolic
reconstructions. BMC Bioinformatics, 8:212+, June
2007.

[7] D. C. McShan, M. Updadhayaya, and I. Shah.
Symbolic inference of xenobiotic metabolism. Pacific

Symposium on Biocomputing. Pacific Symposium on

Biocomputing, pages 545–556, 2004.

[8] P. R. Romero and P. Karp. Nutrient-related analysis
of pathway/genome databases. Pacific Symposium on

Biocomputing. Pacific Symposium on Biocomputing,
pages 471–482, 2001.

[9] P. Suppes. Introduction to Logic. D. Van Nostrand
Co., Princeton, NJ, USA, 1957.

[10] G. J. Sussman. A Computer Model of Skill Acquisition.
Elsevier Science Inc., New York, NY, USA, 1975.

http://biohacker.googlecode.com

	Introduction
	Network Debugger
	Overview
	Demonstration
	Specification
	Implementation
	Domain Data
	Domain Rules
	Queries

	Results
	Metabolizer
	Conclusion
	Availability
	References

