
Scala Music Generation

Valérian Pittet Nada Amin Viktor Kuncak
EPFL

{first.last}@epfl.ch

Figure 1. Concepts

Abstract
We present a case study in Scala of automated music generation.

Categories and Subject Descriptors H.5.5 [Information Inter-
faces and Presentation]: Sound and Music Computing

Keywords music generation, automatic composition

1. Music Generation
1.1 Concepts
The generated piece is divided into cells. Each cell has a duration, a
harmonic chord, a rhythmic pattern and a melody. These four prop-
erties constrain each other. In particular, the melody is constrained
so that its first note is part of the harmonic chord, and so that there
is one note for each element of the rhythmic pattern. Figure 1 sum-
marizes these concepts.

We represent these four properties by mutually-constraining
grammars.

val chords: Grammar[Chord]
val root: Grammar[RootRythm]
val cells: Grammar[RythmCell]
val tones: Grammar[Tone]

[Copyright notice will appear here once ’preprint’ option is removed.]

In the remaining subsections, we show how to set these gram-
mars to generate increasingly better-sounding patterns. We focus
mainly on improving the generation of the melody, so that it is not
too jumpy and has a nice shape.

1.2 Purely Random Melody
For now, we fix the chords to repeat a harmonic sequence well-
known from classical music: I - IV - V - I. The sequence is re-
peated three times, which defines the duration of the piece.

val chords0: Grammar[Chord] =
Triad(I) ** Triad(IV) ** Triad(V) ** Triad(I)

lazy val chords: Grammar[Chord] =
repeat(3)(chords0)

We also fix the rhythm using infinite deterministic grammars.
The duration of a cell is a half-note (H), while a cell has three
notes each time with the pattern quarter-note eight-note eight-note
(Q +: E +: E).

lazy val root: Grammar[RootRythm] =
H ** root

lazy val cells: Grammar[RythmCell] =
(Q +: E +: E) ** cells

Finally, the melody is defined by a grammar of tones. For now,
the grammar simply allows any tone for each note. Figure 2 depicts
this unconstraining grammar.

lazy val tones: Grammar[Tone] =
(I || II || III || IV || V || VI || VII) ** tones

Here is a sample result for the first harmonic sequence:

Triad(I) I I III
Triad(IV) IV II III
Triad(V) VII V III
Triad(I) I VI II

We see that each first note in a cell is constrained to be part of
the chord triad. Otherwise, the melody is unconstrained.

1.3 Flowing Melody
Our first improvement is to create a more flowing melody by chang-
ing the grammar of tones, as illustrated in Figure 3. Starting with
the tonic I, we recursively constrain the next tone to stay within a
range of the previous tone. We give the most weight to a single step
increase or decrease.

lazy val tones: Grammar[Tone] = nextTone(I)
def nextTone(t: Tone): Grammar[Tone] =
t ** (
(nextTone(t decreaseBy 2), 1.0) ||
(nextTone(t decreaseBy 1), 2.0) ||
(nextTone(t), 0.5) ||
(nextTone(t increaseBy 1), 2.0) ||
(nextTone(t increaseBy 2), 1.0)

)

1 2016/7/10

Figure 2. Uniform Random Tones

Figure 3. Weights and Bounded Tones

Here is a sample result for the first harmonic sequence:

Triad(I) I II II
Triad(IV) I VII I
Triad(V) II III IV
Triad(I) III III IV

Like before, we see that each first note in a cell is constrained
to be part of the chord triad. In addition, notes take mostly single
steps.

1.4 Intertial Melody
Instead of fixing the weights associated with increasing or decreas-
ing the tone, we can also vary the weight according to the past
shape of the melody, for example, whether it is already increasing
or decreasing. Figure 4 illustrates this scheme.

Here is a sample result for the first harmonic sequence:

Triad(I) I II IV
Triad(IV) IV VI VII
Triad(V) II III V
Triad(I) III I II

1.5 Variations
So far, we have fixed the harmonic chords and the rhythm. Using
alternations in these grammars, we can also introduce variations in
those aspects.

val chords0: Grammar[Chord] =

Figure 4. Inertial Tone

Triad(I) **
(Triad(V) ||
Triad(IV) ** Triad(V) ||
Triad(IV) ** Triad(V) ** Seventh(V)

) ** Triad(I)

override
lazy val chords: Grammar[Chord] =
repeat(3)(chords0)

override
lazy val root: Grammar[RootRythm] =
((Q ** Q) || H) ** root

override
lazy val cells: Grammar[RythmCell] =
((Q +: E +: E) || ((Q-) +: E)) ** cells

1.6 End Control
We now focus on controlling the end of the generation. Previously,
the chords grammar defined the length of the piece. Now, we tweak
the generation so that the grammars setting the rhythm must also
end for the piece to end. This entails changing these infinite gram-
mars with variations that can possibly end, while also giving us the
freedom to have a different rhythm at the end.

lazy val root: Grammar[RootRythm] =
(rootBody ** root) || rootEnd

val rootBody: Grammar[RootRythm] =
(Q ** Q) || H

val rootEnd: Grammar[RootRythm] = H

lazy val cells: Grammar[RythmCell] =
(cellsBody ** cells) || cellsEnd

val cellsBody: Grammar[RythmCell] =
(Q +: E +: E) || ((Q-) +: E)

val cellsEnd: Grammar[RythmCell] =
RythmCell(H::Nil)

lazy val tones = nextTone(I) ** tonesEnd

val tonesEnd: Grammar[Tone] = I

Here is a sample output:

Triad(I) I VI IV
Triad(IV) VI I
Triad(V) II III I
Triad(I) III V IV
Triad(I) III III
Triad(IV) IV IV

2 2016/7/10

Figure 5. Convergent Refinement

Triad(V) V III
Triad(I) V III II
Triad(I) III V
Triad(IV) VI IV
Triad(V) V III
Triad(I) I

1.7 Convergence
As we get closer to the end, we would like the tones to converge
to the tonic. For this, we leave the tones grammar as is, but from
the chords grammar, we send a message to constrain further the
tones generated. Figure 5 illustrates the constraint on convergence:
at step n, the constraint enforces that only n notes above and below
the tonic can be generated.
lazy val chords: Grammar[Chord] =
(repeat(3)(chords0) **
MelodyRefine[Chord](converge(10)) **
repeat(2)(chords0))

// creates an infinite grammar that converges in n steps
def converge(n: Int): Grammar[Tone] =
// still allows some oscillation after converged
if (n < 2) converge(2)
else {
Production(
(for (i <- -n to n)
yield (Word(I increaseBy i), 1.0)).toList) **

converge(n-1)
}

Here is a sample result:
Triad(I) I I VII
Triad(IV) I I
Triad(V) II I
Triad(I) III III
Triad(I) V V VII
Triad(IV) I I
Triad(V) II IV
Triad(I) V III
Triad(I) V V
Triad(IV) VI IV
Triad(V) II III
Triad(I) I VII
Triad(I) I I II
Triad(IV) I VI IV
Triad(V) II III
Triad(I) I II
Triad(I) III I VII
Triad(IV) I I I
Triad(V) II VII
Triad(I) I

1.8 Outlook
Because the melody is already constrained by a harmonic progres-
sion, we can nicely play the chords at the beginning of each cell.
On the other hand, we don’t attempt to do any voice leading for the
harmonic chords.

2. Related Work
[1, 2]

Acknowledgments
References
[1] J. P. Magalhães and H. V. Koops. Functional generation of harmony

and melody. In Proceedings of the 2nd ACM SIGPLAN International
Workshop on Functional Art, Music, Modeling and Design, FARM ’14,
2014.

[2] D. Quick and P. Hudak. Grammar-based automated music composition
in haskell. In Proceedings of the first ACM SIGPLAN workshop on
Functional Art, Music, Modeling and Design, FARM ’13, 2013.

3 2016/7/10

