
Programmation avancée Troisième projet: Text Processing

Code Guidelines

While implementing this exercise, please make sure that you don’t change the definitions given
in the template. In particular:

• Don’t change the package declaration or the object name. If you are working in Eclipse or
IntelliJ, the package and file names in the IDE must match the ones in the code.

• Don’t change the function names.

• Don’t change the given function signatures.

Respecting these guidelines allows us to be tremendously more efficient in correcting the
submissions. Thank you for your collaboration.

Text Processing

In this mini project we are interested in text processing. Some typical tasks are counting the
number of words in a given text, or reformatting a paragraph of text such that it is pleasant to
read. For creating sample input to test your functions, Scala’s multi-line strings are especially
useful. A multi-line string is created by enclosing a piece of text in triple quotes, like this1:

val sample = """The gutsy gibbon
jumps over
the feisty fawn."""

Most of the functions that you are going to define operate on lists of characters. A Scala string
can be converted to a list of characters by calling its toList method:

val chars: List[Char] = sample.toList

To print lists of characters in a readable way, we first convert them into strings using the mkString
method:

println(chars.mkString)

Extracting lines

In the first part, we are interested in functions that convert an unstructured piece of text into
lines and words. A line is represented by a value of type List[Char]. More specifically, it is
a sequence of characters that does not contain line break characters (line break characters are \n
and \r).

1. Define a function lines that converts an arbitrary list of characters into a list of lines. The
following three subsequences have to be considered as line breaks: List(\n), List(\r) and
List(\r, \n). If there are successive line breaks, the result should include empty lines. Your
function should have the following signature:

def lines(chars: List[Char]): List[List[Char]]

The semantics is illustrated by the following example:

1Note that the resulting value is a normal Scala string.

val foo = """feisty

fawn
"""
println(lines(foo.toList))

should print out
List(List(f,e,i,s,t,y),List(),List(f,a,w,n),List())

2. Define a function unlines that turns a list of lines into a list of characters inserting a \n
character between each two lines.

The following example illustrates the function unlines:
unlines(List(List(’f’,’e’,’i’,’s’,’t’,’y’),List(’f’,’a’,’w’,’n’)))

should yield
List(’f’,’e’,’i’,’s’,’t’,’y’,’\n’,’f’,’a’,’w’,’n’)

3. Bonus: Assume that xs is a list of characters in which line breaks are represented as \n.
Show that for all such lists xs, your implementations of lines and unlines satisfy the follow-
ing equivalence:

unlines(lines(xs)) = xs

Hint: use structural induction as shown in the lecture. Note that purely recursive definitions
(that is, not using library functions such as foldRight or span) are easier to prove correct!

Counting words

In this part we are interested in counting the words contained in a given piece of text. A word is
a non-empty sequence of characters that are not line break characters, white space, or delimiters
such as ’,’ and ’.’. We define type Word = List[Char].

1. Define a function words that converts a list of characters into a list of words. Since word
delimiters are often application-specific, the function takes a predicate which decides whether a
particular character is considered as a delimiter. The signature is as follows:

def words(p: Char => Boolean)(text: List[Char]): List[Word]

For its precise semantics consider the following example:
val t = List(’ ’,’w’,’o’,’r’,’d’,’ ’,’ ’,’p’,’u’,’n’,’ ’)
words(ch => ch == ’ ’)(t)

should yield
List(List(’w’,’o’,’r’,’d’),List(’p’,’u’,’n’))

2. Define a function wordCount that counts the number of words in a text. Use a predicate
which defines whitespace, newline and basic punctuation characters (such as . , : ;) as delimiters.

def wordCount(text: List[Char]): Int

Building a word index

An index allows one to quickly find the places where a specific word occurs in a given text. It is
structured as an alphabetically-sorted list of words indicating for each word the numbers of the
lines where it occurs. In Scala, we can represent an index as a value of the following type:

List[(Word, List[Int])]

The goal of this part is to define a function buildIndex that takes an arbitrary text as argu-
ment and returns an index of its words. Proceed in the following steps:

1. Convert a list of words into a list of pairs, where each pair represents a single occurence of
a word in the text. More specifically, each occurence is represented by a pair consisting of
the word and the corresponding line number.
Use the functions lines and words defined in the previous section to extract the lines and
words from the text, and use the same delimiter predicate as in wordCount.
Hints: Using for comprehensions simplifies this task. For pairing the elements of a list with
their (0-based!) indices, the List class defines a function zipWithIndex (see Scala API
documentation).

2. Sort the list obtained in the first step according to the lexicographic order of the first com-
ponent of each pair. One can access the components of a pair either by

• pattern matching:
myPair match {

case (p, q) => ...
}

• or by using the accessor methods _1 and _2, as in myPair._1.

Note that characters are comparable using the < operator.

3. Collapse the list obtained in the previous step such that occurences of the same word are
merged into a single component with the line numbers aggregated into a sorted list that
contains no duplicates. For example,

(a, 7), (a, 5), (b, 7), (c, 6), (c, 6)

is collapsed into
(a, List(5, 7)), (b, List(7)), (c, List(6))

4. Define a printIndex method that prints indices generated in the last step in the following
format:

...
testing: 4
text: 3, 5
...

Printing a calendar

In this part we are interested in printing a calendar. More specifically, we want to print an
overview of a given month that shows which date falls on which day of the week. For exam-
ple, in 2008, the First of October was a Wednesday.

The month of October 2008 should be printed as follows:
Su Mo Tu We Th Fr Sa

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Leap years, the First of January and all that

To be able to print a monthly overview, we first have to determine on which weekday falls the
first day of the given month. We provide you with the following function definitions to simplify
this task:

/** The weekday of January 1st in year y, represented

* as an Int. 0 is Sunday, 1 is Monday etc. */
def firstOfJan(y: Int): Int = {
val x = y - 1
(365*x + x/4 - x/100 + x/400 + 1) % 7

}

def isLeapYear(y: Int) =
if (y % 100 == 0) (y % 400 == 0) else (y % 4 == 0)

def mlengths(y: Int): List[Int] = {
val feb = if (isLeapYear(y)) 29 else 28
List(31, feb, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

}

With the help of these functions, define a function firstDay that calculates the weekday of the
first day of a given month:

def firstDay(month: Int, year: Int): Int = ...

How to picture that?

Picturing data with a non-trivial layout such as a calendar can be tricky. Therefore, we want
to use a compositional approach where larger, more complex pictures are composed of smaller,
simpler pictures.

In our design, pictures are represented as instances of the Picture case class:
case class Picture(height: Int, width: Int, pxx: List[List[Char]]) {

def showIt: String = unlines(pxx).mkString("")
}

As we can see, a picture has a height and width, and contents pxx which is character data rep-
resented as a list of rows, where each row is a list of characters. The showIt method turns the
picture into a list of characters using the unlines function defined in the first part.

The following function pixel creates a simple picture of height and width 1 that contains a
given character:

def pixel(c: Char) = Picture(1, 1, List(List(c)))

From pictures as simple as that, we want to compose larger ones using composition operators.

1. Define a method above for class Picture that returns a new picture where the argument
picture is put below this:

case class Picture(...) {
def above(q: Picture): Picture = ...

}

For instance, the following code
println((pixel(’a’) above pixel(’b’)).showIt)

should print
a
b

Give an error message (using the predefined error function) when the pictures do not
have the same width.

2. Define a method beside for class Picture that returns a new picture where the argument
picture is put on the right side of this:

case class Picture(...) {
def beside(q: Picture): Picture = ...

}

Give an error message (using the predefined error function) when the pictures do not
have the same height.

3. Define functions stack and spread that arrange a list of pictures above and beside each
other, respectively, producing a single resulting picture. For stack, the picture at the head
of the argument list should be the topmost picture in the result. Similarly for spread, the
head of the list should be the leftmost picture in the result.

def stack(pics: List[Picture]): Picture = ...
def spread(pics: List[Picture]): Picture = ...

4. Define a function tile that arranges a list of rows of pictures in a rectangular way using
the stack and spread functions:

def tile(pxx: List[List[Picture]]): Picture = ...

5. Define a function that takes a width w and a list of characters, and produces a picture of
height 1 and width w where the given characters are justified on the right border:

def rightJustify(w: Int)(chars: List[Char]): Picture = ...

Give an error message if chars.length > w.

6. Define a function group that splits a list into sublists. The function takes an integer as
argument that indicates the split indices (e.g. split every 7 elements). We intend to use
this function to split a list representing a whole month into a list of weeks. Note that this
function is parameterized which means that it can be used with lists of any element type.

def group[T](n: Int, xs: List[T]): List[List[T]] = ...

7. Define a function dayPics that takes the number of the first day and the number of days
of a month and produces a list of 42 pictures. In this list the first d pictures are empty (i.e.
the character data is a list of spaces) if the number of the first day is d (d==0: Sunday, d==1:
Monday etc.). The trailing pictures that correspond to days of the next month are empty,
too. Using this function, a picture of a calendar can be produced by grouping and tiling the
result of dayPics.

def dayPics(d: Int, s: Int): List[Picture] = ...

8. Using the functions defined in the previous steps, define a function calendar that pro-
duces a picture of a calender that corresponds to the given year and month.

def calendar(year: Int, month: Int): Picture = ...

Bonus 1: Add a version of the calendar that prints a month with the days of the week running
from Monday to Sunday.
Bonus 2: Under what conditions does the law

(p above q) beside (r above s) == (p beside r) above (q beside s)

hold?

